Displaying 281 – 300 of 535

Showing per page

Spectre des laplaciens de Lichnerowicz sur les sphères et les projectifs réels.

Mohamed Boucetta (1999)

Publicacions Matemàtiques

In this paper, we compute the spectrum of the Lichnerowicz laplacian on the symmetric forms of degree 2 on the sphere Sn and the real projective space RPn. This is obtained by generalizing to forms the calculations of the spectrum of the laplacian on fonctions done via restriction of harmonic polynomials on euclidean space.

Spectrum of the Laplace operator and periodic geodesics: thirty years after

Yves Colin de Verdière (2007)

Annales de l’institut Fourier

What is called the “Semi-classical trace formula” is a formula expressing the smoothed density of states of the Laplace operator on a compact Riemannian manifold in terms of the periodic geodesics. Mathematical derivation of such formulas were provided in the seventies by several authors. The main goal of this paper is to state the formula and to give a self-contained proof independent of the difficult use of the global calculus of Fourier Integral Operators. This proof is close in the spirit of...

Spectrum of the laplacian in a narrow curved strip with combined Dirichlet and Neumann boundary conditions

David Krejčiřík (2009)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the laplacian in a domain squeezed between two parallel curves in the plane, subject to Dirichlet boundary conditions on one of the curves and Neumann boundary conditions on the other. We derive two-term asymptotics for eigenvalues in the limit when the distance between the curves tends to zero. The asymptotics are uniform and local in the sense that the coefficients depend only on the extremal points where the ratio of the curvature radii of the Neumann boundary to the Dirichlet one...

Spectrum of the Laplacian in a narrow curved strip with combined Dirichlet and Neumann boundary conditions

David Krejčiřík (2008)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the Laplacian in a domain squeezed between two parallel curves in the plane, subject to Dirichlet boundary conditions on one of the curves and Neumann boundary conditions on the other. We derive two-term asymptotics for eigenvalues in the limit when the distance between the curves tends to zero. The asymptotics are uniform and local in the sense that the coefficients depend only on the extremal points where the ratio of the curvature radii of the Neumann boundary to the Dirichlet one...

Spectrum of the Laplacian in narrow tubular neighbourhoods of hypersurfaces with combined Dirichlet and Neumann boundary conditions

David Krejčiřík (2014)

Mathematica Bohemica

We consider the Laplacian in a domain squeezed between two parallel hypersurfaces in Euclidean spaces of any dimension, subject to Dirichlet boundary conditions on one of the hypersurfaces and Neumann boundary conditions on the other. We derive two-term asymptotics for eigenvalues in the limit when the distance between the hypersurfaces tends to zero. The asymptotics are uniform and local in the sense that the coefficients depend only on the extremal points where the ratio of the area of the Neumann...

Speculating About Mountains

Ribarska, N., Tsachev, Ts., Krastanov, M. (1996)

Serdica Mathematical Journal

∗Partially supported by Grant MM 409/94 of the Mininstry of Education, Science and Technology, Bulgaria. ∗∗Partially supported by Grants MM 521/95, MM 442/94 of the Mininstry of Education, Science and Technology, Bulgaria.The definition of the weak slope of continuous functions introduced by Degiovanni and Marzocchi (cf. [8]) and its interrelation with the notion “steepness” of locally Lipschitz functions are discussed. A deformation lemma and a mountain pass theorem for usco mappings are proved....

Speed of the Brownian loop on a manifold

Rémi Léandre (2006)

Banach Center Publications

We define the speed of the curved Brownian bridge as a white noise distribution operating on stochastic Chen integrals.

Currently displaying 281 – 300 of 535