Quelques aspects de la théorie des points fixes dans les espaces de Banach - I
Nous considérons les groupes de cobordisme (définis par Arnold) d’immersions lagrangiennes exactes de variétés compactes dans . Grâce au théorème de Gromov-Lees, leur calcul est celui des groupes d’homotopie de spectres de Thom construits sur les espaces (cas non-orienté, le calcul est alors dû à Smith et Stong) et (cas orienté, groupes dont nous calculons la “partie paire”, et sur la “partie impaire” desquels nous donnons des informations). Nous calculons aussi les images de ces groupes dans...
Un résultat de positivité de théorie de Hodge nous permet de déterminer certaines pôles de la distribution pour une fonction analytique à singularité isolée. Dans le cas des courbes et des singularités quasi-homogènes on détermine l’ensemble exact des pôles. On démontre aussi que si le résidu d’une forme holomorphe est de carré intégrable sur la fibre spéciale, l’intégrale sur la fibre spéciale est limite de celle sur les fibres voisines.