Relation of the spectra of symplectic Rarita-Schwinger and Dirac operators on flat symplectic manifolds
Consider a flat symplectic manifold , , admitting a metaplectic structure. We prove that the symplectic twistor operator maps the eigenvectors of the symplectic Dirac operator, that are not symplectic Killing spinors, to the eigenvectors of the symplectic Rarita-Schwinger operator. If is an eigenvalue of the symplectic Dirac operator such that is not a symplectic Killing number, then is an eigenvalue of the symplectic Rarita-Schwinger operator.