Displaying 161 – 180 of 387

Showing per page

Comparison of the refined analytic and the Burghelea-Haller torsions

Maxim Braverman, Thomas Kappeler (2007)

Annales de l’institut Fourier

The refined analytic torsion associated to a flat vector bundle over a closed odd-dimensional manifold canonically defines a quadratic form τ on the determinant line of the cohomology. Both τ and the Burghelea-Haller torsion are refinements of the Ray-Singer torsion. We show that whenever the Burghelea-Haller torsion is defined it is equal to ± τ . As an application we obtain new results about the Burghelea-Haller torsion. In particular, we prove a weak version of the Burghelea-Haller conjecture relating...

Complétude asymptotique pour l'équation des ondes dans une classe d'espaces-temps stationnaires et asymptotiquement plats

Dietrich Häfner (2001)

Annales de l’institut Fourier

En utilisant une méthode dépendante du temps, nous démontrons la complétude asymptotique pour l'équation des ondes dans une classe d'espaces-temps stationnaires et asymptotiquement plats. On introduit l'observable de vitesse asymptotique et on décrit son spectre (sous des hypothèses plus faibles que pour la complétude asymptotique). Les méthodes utilisées sont inspirées par celles de l'analyse du problème à deux corps en mécanique quantique.

Complex Ginzburg-Landau equations in high dimensions and codimension two area minimizing currents

Fanghua Lin, Tristan Rivière (1999)

Journal of the European Mathematical Society

There is an obvious topological obstruction for a finite energy unimodular harmonic extension of a S 1 -valued function defined on the boundary of a bounded regular domain of R n . When such extensions do not exist, we use the Ginzburg-Landau relaxation procedure. We prove that, up to a subsequence, a sequence of Ginzburg-Landau minimizers, as the coupling parameter tends to infinity, converges to a unimodular harmonic map away from a codimension-2 minimal current minimizing the area within the homology...

Complex methods in real integral geometry

Eastwood, Michael (1997)

Proceedings of the 16th Winter School "Geometry and Physics"

This is an exposition of a general machinery developed by M. G. Eastwood, T. N. Bailey, C. R. Graham which analyses some real integral transforms using complex methods. The machinery deals with double fibrations M Ω η Ω ˜ @ > τ > > X ( Ω complex manifold; M totally real, real-analytic submanifold;...

Currently displaying 161 – 180 of 387