Displaying 41 – 60 of 90

Showing per page

On compatible linear connections of two-dimensional generalized Berwald manifolds: a classical approach

Csaba Vincze, Tahere Reza Khoshdani, Sareh Mehdi Zadeh Gilani, Márk Oláh (2019)

Communications in Mathematics

In the paper we characterize the two-dimensional generalized Berwald manifolds in terms of the classical setting of Finsler surfaces (Berwald frame, main scalar etc.). As an application we prove that if a Landsberg surface is a generalized Berwald manifold then it must be a Berwald manifold. Especially, we reproduce Wagner's original result in honor of the 75th anniversary of publishing his pioneering work about generalized Berwald manifolds.

On the geometry of some para-hypercomplex Lie groups

H. R. Salimi Moghaddam (2009)

Archivum Mathematicum

In this paper, firstly we study some left invariant Riemannian metrics on para-hypercomplex 4-dimensional Lie groups. In each Lie group, the Levi-Civita connection and sectional curvature have been given explicitly. We also show these spaces have constant negative scalar curvatures. Then by using left invariant Riemannian metrics introduced in the first part, we construct some left invariant Randers metrics of Berwald type. The explicit formulas for computing flag curvature have been obtained in...

Plateau-Stein manifolds

Misha Gromov (2014)

Open Mathematics

We study/construct (proper and non-proper) Morse functions f on complete Riemannian manifolds X such that the hypersurfaces f(x) = t for all −∞ < t < +∞ have positive mean curvatures at all non-critical points x ∈ X of f. We show, for instance, that if X admits no such (not necessarily proper) function, then it contains a (possibly, singular) complete (possibly, compact) minimal hypersurface of finite volume.

Poincaré-invariant structures in the solution manifold of a nonlinear wave equation.

Irving E. Segal (1986)

Revista Matemática Iberoamericana

The solution manifold M of the equation ⎯φ + gφ3 = 0 in Minkowski space is studied from the standpoint of the establishment of differential-geometric structures therein. It is shown that there is an almost Kähler structure globally defined on M that is Poincaré invariant. In the vanishing curvature case g = 0 the structure obtained coincides with the complex Hilbert structure in the solution manifold of the real wave equation. The proofs are based on the transfer of the equation to an ambient universal...

Riemannian geometries on spaces of plane curves

Peter W. Michor, David Mumford (2006)

Journal of the European Mathematical Society

We study some Riemannian metrics on the space of smooth regular curves in the plane, viewed as the orbit space of maps from S 1 to the plane modulo the group of diffeomorphisms of S 1 , acting as reparametrizations. In particular we investigate the metric, for a constant A > 0 , G c A ( h , k ) : = S 1 ( 1 + A κ c ( θ ) 2 ) h ( θ ) , k ( θ ) | c ' ( θ ) | d θ where κ c is the curvature of the curve c and h , k are normal vector fields to c . The term A κ 2 is a sort of geometric Tikhonov regularization because, for A = 0 , the geodesic distance between any two distinct curves is 0, while for A > 0 the...

Currently displaying 41 – 60 of 90