Second order differentiability and Lipschitz smooth points of convex functionals
We extend Zajíček’s theorem from [Za] about points of singlevaluedness of monotone operators on Asplund spaces. Namely we prove that every monotone operator on a subspace of a Banach space containing densely a continuous image of an Asplund space (these spaces are called GSG spaces) is singlevalued on the whole space except a -cone supported set.
The paper contains calculus rules for coderivatives of compositions, sums and intersections of set-valued mappings. The types of coderivatives considered correspond to Dini-Hadamard and limiting Dini-Hadamard subdifferentials in Gˆateaux differentiable spaces, Fréchet and limiting Fréchet subdifferentials in Asplund spaces and approximate subdifferentials in arbitrary Banach spaces. The key element of the unified approach to obtaining various calculus rules for various types of derivatives presented...