Page 1

Displaying 1 – 19 of 19

Showing per page

On Asplund functions

Wee-Kee Tang (1999)

Commentationes Mathematicae Universitatis Carolinae

A class of convex functions where the sets of subdifferentials behave like the unit ball of the dual space of an Asplund space is found. These functions, which we called Asplund functions also possess some stability properties. We also give a sufficient condition for a function to be an Asplund function in terms of the upper-semicontinuity of the subdifferential map.

On inverses of δ -convex mappings

Jakub Duda (2001)

Commentationes Mathematicae Universitatis Carolinae

In the first part of this paper, we prove that in a sense the class of bi-Lipschitz δ -convex mappings, whose inverses are locally δ -convex, is stable under finite-dimensional δ -convex perturbations. In the second part, we construct two δ -convex mappings from 1 onto 1 , which are both bi-Lipschitz and their inverses are nowhere locally δ -convex. The second mapping, whose construction is more complicated, has an invertible strict derivative at 0 . These mappings show that for (locally) δ -convex mappings...

On Lipschitz and d.c. surfaces of finite codimension in a Banach space

Luděk Zajíček (2008)

Czechoslovak Mathematical Journal

Properties of Lipschitz and d.c. surfaces of finite codimension in a Banach space and properties of generated σ -ideals are studied. These σ -ideals naturally appear in the differentiation theory and in the abstract approximation theory. Using these properties, we improve an unpublished result of M. Heisler which gives an alternative proof of a result of D. Preiss on singular points of convex functions.

On local convexity of nonlinear mappings between Banach spaces

Iryna Banakh, Taras Banakh, Anatolij Plichko, Anatoliy Prykarpatsky (2012)

Open Mathematics

We find conditions for a smooth nonlinear map f: U → V between open subsets of Hilbert or Banach spaces to be locally convex in the sense that for some c and each positive ɛ < c the image f(B ɛ(x)) of each ɛ-ball B ɛ(x) ⊂ U is convex. We give a lower bound on c via the second order Lipschitz constant Lip2(f), the Lipschitz-open constant Lipo(f) of f, and the 2-convexity number conv2(X) of the Banach space X.

On the range of the derivative of a smooth function and applications.

Robert Deville (2006)

RACSAM

We survey recent results on the structure of the range of the derivative of a smooth real valued function f defined on a real Banach space X and of a smooth mapping F between two real Banach spaces X and Y. We recall some necessary conditions and some sufficient conditions on a subset A of L(X,Y) for the existence of a Fréchet-differentiable mapping F from X into Y so that F'(X) = A. Whenever F is only assumed Gâteaux-differentiable, new phenomena appear: we discuss the existence of a mapping F...

Currently displaying 1 – 19 of 19

Page 1