Displaying 21 – 40 of 131

Showing per page

Elliptic cohomologies: an introductory survey.

Guillermo Moreno (1992)

Publicacions Matemàtiques

Let α and β be any angles then the known formula sin (α+β) = sinα cosβ + cosα sinβ becomes under the substitution x = sinα, y = sinβ, sin (α + β) = x √(1 - y2) + y √(1 - x2) =: F(x,y). This addition formula is an example of "Formal group law", which show up in many contexts in Modern Mathematics.In algebraic topology suitable cohomology theories induce a Formal group Law, the elliptic cohomologies are the ones who realize the Euler addition formula (1778): F(x,y) =: (x √R(y) + y √R(x)/1 - εx2y2)....

Geometric heat kernel coefficient for APS-type boundary conditions

Gorm Salomonsen (1998)

Journées équations aux dérivées partielles

I present an alternative way of computing the index of a Dirac operator on a manifold with boundary and a special family of pseudodifferential boundary conditions. The local version of this index theorem contains a number of divergence terms in the interior, which are higher order heat kernel invariants. I will present a way of associating boundary terms to those divergence terms, which are rather local of nature.

Currently displaying 21 – 40 of 131