The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this work we extend a previous work about the Weyl asymptotics of the distribution of eigenvalues of non-self-adjoint differential operators with small multiplicative random perturbations, by treating the case of operators on compact manifolds
We study a system of pseudodifferential equations which is elliptic in the Petrovskii sense on a closed smooth manifold. We prove that the operator generated by the system is a Fredholm operator in a refined two-sided scale of Hilbert function spaces. Elements of this scale are special isotropic spaces of Hörmander-Volevich-Paneah.
Nous donnons des résultats analytiques sur les propriétés de régularité du laplacien hypoelliptique de Jean-Michel Bismut et plus généralement sur les opérateurs de type Fokker-Planck géométrique agissant sur le fibré cotangent d’une variété riemannienne compacte . En particulier, nous prouvons un résultat d’hypoellipticité maximale pour , et nous en déduisons des bornes sur la localisation de ses valeurs spectrales.
Currently displaying 1 –
9 of
9