Scattering matrix for asymptotically euclidean manifolds
For a class of non compact Riemannian manifolds with ends, we give semi-classical expansions of bounded functions of the Laplacian. We then study related boundedness properties of these operators and show in particular that, although they are not bounded on in general, they are always bounded on suitable weighted spaces.
Let be a compact Kähler manifold with integral Kähler class and a holomorphic Hermitian line bundle whose curvature is the symplectic form of . Let be a Hamiltonian, and let be the Toeplitz operator with multiplier acting on the space . We obtain estimates on the eigenvalues and eigensections of as , in terms of the classical Hamilton flow of . We study in some detail the case when is an integral coadjoint orbit of a Lie group.
Per una classe di operatori pseudodifferenziali a caratteristiche multiple vengono date condizioni necessarie e sufficienti per la validità di stime dal basso «ottimali»
What is called the “Semi-classical trace formula” is a formula expressing the smoothed density of states of the Laplace operator on a compact Riemannian manifold in terms of the periodic geodesics. Mathematical derivation of such formulas were provided in the seventies by several authors. The main goal of this paper is to state the formula and to give a self-contained proof independent of the difficult use of the global calculus of Fourier Integral Operators. This proof is close in the spirit of...
Les groupes d’homotopie du groupe (stabilisé) des opérateurs pseudodifférentiels inversibles d’ordre zéro agissant sur une variété compacte sans bord sont calculés en termes de la -théorie du fibré cosphérique . Du même coup, on montre que le sous-groupe des perturbations compactes inversibles de l’identité est faiblement rétractile dans . Les résultats sont aussi adaptés au cas des opérateurs suspendus. Des applications à la théorie de l’indice et pour le déterminant résiduel de Simon Scott...
Dans cet article on décrit le spectre semi-classique d’un opérateur de Schrödinger sur avec un potentiel type double puits. La description qu’on donne est celle du spectre autour du maximum local du potentiel. Dans la classification des singularités de l’application moment d’un système intégrable, le double puits représente le cas des singularités non-dégénérées de type hyperbolique.
We introduce the notion of system of meromorphic microdifferential equations. We use it to prove a desingularization theorem for systems of microdifferential equations.