Paramétrix d’opérateurs elliptiques de classe
Sur une variété analytique paracompacte de dimension 2, on considère un opérateur différentiel à symbole principal analytique vérifiant la condition de Nirenberg et Treves. En ajoutant une nouvelle variable et en utilisant des estimations a priori de type Carleman, on montre qu’il y a propagation des singularités pour , dans , le long des feuilles intégrales du système différentiel engendré par les champs hamiltoniens de Re et Im.
Let be a classical pseudodifferential operator of order on a paracompact manifold . Let be the principal symbol and assume that is an involutive sub-manifold of , satisfying a certain transversality condition. We assume that vanishes exactly to order on and that the derivatives of order satisfy a certain condition, inspired from the Calderòn uniqueness theorem (usually empty when ). Suppose that a Levi condition is valid for the lower order symbols. If , , then is a union...
In this talk we describe the propagation of and Sobolev singularities for the wave equation on manifolds with corners equipped with a Riemannian metric . That is, for , , and solving with homogeneous Dirichlet or Neumann boundary conditions, we show that is a union of maximally extended generalized broken bicharacteristics. This result is a counterpart of Lebeau’s results for the propagation of analytic singularities on real analytic manifolds with appropriately stratified boundary,...
This paper is a continuation of Part I of the same title which has appeared at the last issue of this journal.