Page 1

Displaying 1 – 6 of 6

Showing per page

A fixed point formula of Lefschetz type in Arakelov geometry II: A residue formula

Kai Köhler, Damien Roessler (2002)

Annales de l’institut Fourier

This is the second of a series of papers dealing with an analog in Arakelov geometry of the holomorphic Lefschetz fixed point formula. We use the main result of the first paper to prove a residue formula "à la Bott" for arithmetic characteristic classes living on arithmetic varieties acted upon by a diagonalisable torus; recent results of Bismut- Goette on the equivariant (Ray-Singer) analytic torsion play a key role in the proof.

An arithmetic Hilbert–Samuel theorem for pointed stable curves

Gerard Freixas i Montplet (2012)

Journal of the European Mathematical Society

Let ( 𝒪 , , F ) be an arithmetic ring of Krull dimension at most 1 , S = Spec ( 𝒪 ) and ( 𝒳 S ; σ 1 , ... , σ n ) a pointed stable curve. Write 𝒰 = 𝒳 j σ j ( S ) . For every integer k > 0 , the invertible sheaf ω 𝒳 / S k + 1 ( k σ 1 + ... + k σ n ) inherits a singular hermitian structure from the hyperbolic metric on the Riemann surface 𝒰 . In this article we define a Quillen type metric · Q on the determinant line λ k + 1 = λ ω 𝒳 / S k + 1 ( k ...

Analytic torsions on contact manifolds

Michel Rumin, Neil Seshadri (2012)

Annales de l’institut Fourier

We propose a definition for analytic torsion of the contact complex on contact manifolds. We show it coincides with Ray–Singer torsion on any 3 -dimensional CR Seifert manifold equipped with a unitary representation. In this particular case we compute it and relate it to dynamical properties of the Reeb flow. In fact the whole spectral torsion function we consider may be interpreted on CR Seifert manifolds as a purely dynamical function through Selberg-like trace formulae, that hold also in variable...

Currently displaying 1 – 6 of 6

Page 1