A Markov process underlying the generalized Syracuse algorithm
This paper deals with the relationship between two-dimensional parameter Gaussian random fields verifying a particular Markov property and the solutions of stochastic differential equations. In the non Gaussian case some diffusion conditions are introduced, obtaining a backward equation for the evolution of transition probability functions.
We prove unconditionality of general Franklin systems in , where X is a UMD space and where the general Franklin system corresponds to a quasi-dyadic, weakly regular sequence of knots.
A generic control variate method is proposed to price options under stochastic volatility models by Monte Carlo simulations. This method provides a constructive way to select control variates which are martingales in order to reduce the variance of unbiased option price estimators. We apply a singular and regular perturbation analysis to characterize the variance reduced by martingale control variates. This variance analysis is done in the regime where time scales of associated driving volatility...
The aim of this paper is to show that the theory of (generalized) random systems with complete connection may serve as a mathematical framework for learning and adaption. Chapter 1 is of an introductory nature and gives a general description of the problems with which one is faced. In Chapter 2 the mathematical model and some results about it are explained. Chapter 3 deals with special learning and adaption models.