The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 81 – 100 of 1208

Showing per page

On a non-Markovian queueing problem under a control operating policy and start-up times

Arun Borthakur, Ruby Gohain (1982)

Aplikace matematiky

A non-Markovian queueing system with Poisson input is studied under a modified operating rule called “control operating policy” in which the server begins “start-up” only when the queue length reaches a fixed number n ( 1 ) . By using the supplementary variable technique, the distribution of the queue length (excluding those being served) in the form of a generating function is obtained. As a special case, a Markovian queueing system with exponential start-up is discussed in detail to analyse the economic...

On a probabilistic interpretation of shape derivatives of Dirichlet groundstates with application to Fermion nodes

Mathias Rousset (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper considers Schrödinger operators, and presents a probabilistic interpretation of the variation (or shape derivative) of the Dirichlet groundstate energy when the associated domain is perturbed. This interpretation relies on the distribution on the boundary of a stopped random process with Feynman-Kac weights. Practical computations require in addition the explicit approximation of the normal derivative of the groundstate on the boundary. We then propose to use this formulation in the...

On a problem by Schweizer and Sklar

Fabrizio Durante (2012)

Kybernetika

We give a representation of the class of all n -dimensional copulas such that, for a fixed m , 2 m < n , all their m -dimensional margins are equal to the independence copula. Such an investigation originated from an open problem posed by Schweizer and Sklar.

On a relation between norms of the maximal function and the square function of a martingale

Masato Kikuchi (2013)

Colloquium Mathematicae

Let Ω be a nonatomic probability space, let X be a Banach function space over Ω, and let ℳ be the collection of all martingales on Ω. For f = ( f ) n , let Mf and Sf denote the maximal function and the square function of f, respectively. We give some necessary and sufficient conditions for X to have the property that if f, g ∈ ℳ and | | M g | | X | | M f | | X , then | | S g | | X C | | S f | | X , where C is a constant independent of f and g.

Currently displaying 81 – 100 of 1208