Previous Page 2

Displaying 21 – 32 of 32

Showing per page

Affine Dunkl processes of type A ˜ 1

François Chapon (2012)

Annales de l'I.H.P. Probabilités et statistiques

We introduce the analogue of Dunkl processes in the case of an affine root system of type A ˜ 1 . The construction of the affine Dunkl process is achieved by a skew-product decomposition by means of its radial part and a jump process on the affine Weyl group, where the radial part of the affine Dunkl process is given by a Gaussian process on the ultraspherical hypergroup [ 0 , 1 ] . We prove that the affine Dunkl process is a càdlàg Markov process as well as a local martingale, study its jumps, and give a martingale...

Analytic potential theory over the p -adics

Shai Haran (1993)

Annales de l'institut Fourier

Over a non-archimedean local field the absolute value, raised to any positive power α > 0 , is a negative definite function and generates (the analogue of) the symmetric stable process. For α ( 0 , 1 ) , this process is transient with potential operator given by M. Riesz’ kernel. We develop this potential theory purely analytically and in an explicit manner, obtaining special features afforded by the non-archimedean setting ; e.g. Harnack’s inequality becomes an equality.

Asymptotic properties of harmonic measures on homogeneous trees

Konrad Kolesko (2010)

Colloquium Mathematicae

Let Aff(𝕋) be the group of isometries of a homogeneous tree 𝕋 fixing an end of its boundary. Given a probability measure on Aff(𝕋) we consider an associated random process on the tree. It is known that under suitable hypothesis this random process converges to the boundary of the tree defining a harmonic measure there. In this paper we study the asymptotic behaviour of this measure.

Currently displaying 21 – 32 of 32

Previous Page 2