Displaying 21 – 40 of 66

Showing per page

The gamma-uniform distribution and its applications

Hamzeh Torabi, Narges Montazeri Hedesh (2012)

Kybernetika

Up to present for modelling and analyzing of random phenomenons, some statistical distributions are proposed. This paper considers a new general class of distributions, generated from the logit of the gamma random variable. A special case of this family is the Gamma-Uniform distribution. We derive expressions for the four moments, variance, skewness, kurtosis, Shannon and Rényi entropy of this distribution. We also discuss the asymptotic distribution of the extreme order statistics, simulation issues,...

The importance of being the upper bound in the bivariate family.

Carles M. Cuadras (2006)

SORT

Any bivariate cdf is bounded by the Fréchet-Hoeffding lower and upper bounds. We illustrate the importance of the upper bound in several ways. Any bivariate distribution can be written in terms of this bound, which is implicit in logit analysis and the Lorenz curve, and can be used in goodness-of-fit assesment. Any random variable can be expanded in terms of some functions related to this bound. The Bayes approach in comparing two proportions can be presented as the problem of choosing a parametric...

The inverse distribution for a dichotomous random variable

Elisabetta Bona, Dario Sacchetti (1997)

Commentationes Mathematicae Universitatis Carolinae

In this paper we will deal with the determination of the inverse of a dichotomous probability distribution. In particular it will be shown that a dichotomous distribution admit inverse if and only if it corresponds to a random variable assuming values ( 0 , a ) , a + . Moreover we will provide two general results about the behaviour of the inverse distribution relative to the power and to a linear transformation of a measure.

The large deviation principle for certain series

Miguel A. Arcones (2010)

ESAIM: Probability and Statistics

We study the large deviation principle for stochastic processes of the form { k = 1 x k ( t ) ξ k : t T } , where { ξ k } k = 1 is a sequence of i.i.d.r.v.'s with mean zero and x k ( t ) . We present necessary and sufficient conditions for the large deviation principle for these stochastic processes in several situations. Our approach is based in showing the large deviation principle of the finite dimensional distributions and an exponential asymptotic equicontinuity condition. In order to get the exponential asymptotic equicontinuity condition,...

The large deviation principle for certain series

Miguel A. Arcones (2004)

ESAIM: Probability and Statistics

We study the large deviation principle for stochastic processes of the form { k = 1 x k ( t ) ξ k : t T } , where { ξ k } k = 1 is a sequence of i.i.d.r.v.’s with mean zero and x k ( t ) . We present necessary and sufficient conditions for the large deviation principle for these stochastic processes in several situations. Our approach is based in showing the large deviation principle of the finite dimensional distributions and an exponential asymptotic equicontinuity condition. In order to get the exponential asymptotic equicontinuity condition,...

The LASSO estimator: Distributional properties

Rakshith Jagannath, Neelesh S. Upadhye (2018)

Kybernetika

The least absolute shrinkage and selection operator (LASSO) is a popular technique for simultaneous estimation and model selection. There have been a lot of studies on the large sample asymptotic distributional properties of the LASSO estimator, but it is also well-known that the asymptotic results can give a wrong picture of the LASSO estimator's actual finite-sample behaviour. The finite sample distribution of the LASSO estimator has been previously studied for the special case of orthogonal models....

The Lévy-Khintchine formula and Nica-Speicher property for deformations of the free convolution

Łukasz Jan Wojakowski (2007)

Banach Center Publications

We study deformations of the free convolution arising via invertible transformations of probability measures on the real line T:μ ↦ Tμ. We define new associative convolutions of measures by μ T ν = T - 1 ( T μ T ν ) . We discuss infinite divisibility with respect to these convolutions, and we establish a Lévy-Khintchine formula. We conclude the paper by proving that for any such deformation of free probability all probability measures μ have the Nica-Speicher property, that is, one can find their convolution power μ T s for...

The proportional likelihood ratio order and applications.

Héctor M. Ramos Romero, Miguel Angel Sordo Díaz (2001)

Qüestiió

In this paper, we introduce a new stochastic order between continuous non-negative random variables called the PLR (proportional likelihood ratio) order, which is closely related to the usual likelihood ratio order. The PLR order can be used to characterize random variables whose logarithms have log-concave (log-convex) densities. Many income random variables satisfy this property and they are said to have the IPLR (increasing proportional likelihood ratio) property (DPLR property). As an application,...

Currently displaying 21 – 40 of 66