Central limit problem and invariance principles on Banach spaces
We consider a sequence of stochastic processes with continuous trajectories and we show conditions for the tightness of the sequence in the Hölder space with a parameter .
Using the Perron-Frobenius operator we establish a new functional central limit theorem for non-invertible measure preserving maps that are not necessarily ergodic. We apply the result to asymptotically periodic transformations and give a specific example using the tent map.
In a continuous time random walk (CTRW), a random waiting time precedes each random jump. The CTRW model is useful in physics, to model diffusing particles. Its scaling limit is a time-changed process, whose densities solve an anomalous diffusion equation. This paper develops limit theory and governing equations for cluster CTRW, in which a random number of jumps cluster together into a single jump. The clustering introduces a dependence between the waiting times and jumps that significantly affects...
The Gauss−Minkowski correspondence in ℝ2 states the existence of a homeomorphism between the probability measures μ on [0,2π] such that ∫ 0 2 π e ix d μ ( x ) = 0 and the compact convex sets (CCS) of the plane with perimeter 1. In this article, we bring out explicit formulas relating the border of a CCS to its probability measure. As a consequence, we show that some natural operations on CCS – for example, the Minkowski sum – have natural translations in terms of probability measure operations,...
The aim of this paper is to compare various criteria leading to the central limit theorem and the weak invariance principle. These criteria are the martingale-coboundary decomposition developed by Gordin in Dokl. Akad. Nauk SSSR188 (1969), the projective criterion introduced by Dedecker in Probab. Theory Related Fields110 (1998), which was subsequently improved by Dedecker and Rio in Ann. Inst. H. Poincaré Probab. Statist.36 (2000) and the condition introduced by Maxwell and Woodroofe in Ann. Probab.28...
Let , , be a double array of independent and identically distributed (i.i.d.) real random variables with , and . Consider sample covariance matrices (with/without empirical centering) and , where and with , non-random symmetric non-negative definite matrix. It is proved that central limit theorems of eigenvalue statistics of and are different as with approaching a positive constant. Moreover, it is also proved that such a different behavior is not observed in the average behavior...
For a branching process in random environment it is assumed that the offspring distribution of the individuals varies in a random fashion, independently from one generation to the other. For the subcritical regime a kind of phase transition appears. In this paper we study the intermediately subcritical case, which constitutes the borderline within this phase transition. We study the asymptotic behavior of the survival probability. Next the size of the population and the shape of the random environment...