A local limit theorem for the critical random graph.
For large N, we consider the ordinary continued fraction of x=p/q with 1≤p≤q≤N, or, equivalently, Euclid’s gcd algorithm for two integers 1≤p≤q≤N, putting the uniform distribution on the set of p and qs. We study the distribution of the total cost of execution of the algorithm for an additive cost function c on the set ℤ+* of possible digits, asymptotically for N→∞. If c is nonlattice and satisfies mild growth conditions, the local limit theorem was proved previously by the second named author....
We prove a lower bound in a law of the iterated logarithm for sums of the form where f satisfies certain conditions and the satisfy the Hadamard gap condition .
A randomized q-central or q-commutative limit theorem on a family of bialgebras with one complex parameter is shown.
We prove the central limit theorem for the multisequence where , are reals, are partially hyperbolic commuting s × s matrices, and x is a uniformly distributed random variable in . The main tool is the S-unit theorem.
We prove a new large deviation inequality with applications when projecting a density on a wavelet basis.
We state and prove a noncommutative limit theorem for correlations which are homogeneous with respect to order-preserving injections. The most interesting examples of central limit theorems in quantum probability (for commuting, anticommuting, and free independence and also various q-qclt's), as well as the limit theorems for the Poisson law and the free Poisson law are special cases of the theorem. In particular, the theorem contains the q-central limit theorem for non-identically distributed variables,...