Displaying 61 – 80 of 1890

Showing per page

A local limit theorem with speed of convergence for euclidean algorithms and diophantine costs

Viviane Baladi, Aïcha Hachemi (2008)

Annales de l'I.H.P. Probabilités et statistiques

For large N, we consider the ordinary continued fraction of x=p/q with 1≤p≤q≤N, or, equivalently, Euclid’s gcd algorithm for two integers 1≤p≤q≤N, putting the uniform distribution on the set of p and qs. We study the distribution of the total cost of execution of the algorithm for an additive cost function c on the set ℤ+* of possible digits, asymptotically for N→∞. If c is nonlattice and satisfies mild growth conditions, the local limit theorem was proved previously by the second named author....

A multiparameter variant of the Salem-Zygmund central limit theorem on lacunary trigonometric series

Mordechay B. Levin (2013)

Colloquium Mathematicae

We prove the central limit theorem for the multisequence 1 n N 1 n d N d a n , . . . , n d c o s ( 2 π m , A n . . . A d n d x ) where m s , a n , . . . , n d are reals, A , . . . , A d are partially hyperbolic commuting s × s matrices, and x is a uniformly distributed random variable in [ 0 , 1 ] s . The main tool is the S-unit theorem.

A noncommutative limit theorem for homogeneous correlations

Romuald Lenczewski (1998)

Studia Mathematica

We state and prove a noncommutative limit theorem for correlations which are homogeneous with respect to order-preserving injections. The most interesting examples of central limit theorems in quantum probability (for commuting, anticommuting, and free independence and also various q-qclt's), as well as the limit theorems for the Poisson law and the free Poisson law are special cases of the theorem. In particular, the theorem contains the q-central limit theorem for non-identically distributed variables,...

Currently displaying 61 – 80 of 1890