Self-similar fragmentations
Page 1
Jean Bertoin (2002)
Annales de l'I.H.P. Probabilités et statistiques
Loïc Chaumont, David G. Hobson, Marc Yor (2001)
Séminaire de probabilités de Strasbourg
Jean Bertoin, Jean-François Le Gall (2005)
Annales de l'I.H.P. Probabilités et statistiques
S. C. Harris, R. Knobloch, A. E. Kyprianou (2010)
Annales de l'I.H.P. Probabilités et statistiques
In the spirit of a classical result for Crump–Mode–Jagers processes, we prove a strong law of large numbers for fragmentation processes. Specifically, for self-similar fragmentation processes, including homogenous processes, we prove the almost sure convergence of an empirical measure associated with the stopping line corresponding to first fragments of size strictly smaller than η for 1≥η>0.
Giorgio Letta (1989)
Séminaire de probabilités de Strasbourg
Jean Bretagnolle, Andrzej Klopotowski (1995)
Annales de l'I.H.P. Probabilités et statistiques
Robert Knobloch, Andreas E. Kyprianou (2014)
Annales de l'I.H.P. Probabilités et statistiques
We consider a homogeneous fragmentation process with killing at an exponential barrier. With the help of two families of martingales we analyse the decay of the largest fragment for parameter values that allow for survival. In this respect the present paper is also concerned with the probability of extinction of the killed process.
Page 1