Moyennes et mesures en mécanique quantique et en mécanique classique
Conditions under which the linear process is non-negative are investigated in the paper. In the definition of the linear process a strict white noise is used. Explicit results are presented also for the models AR(1) and AR(2).
In this article, our aim is to estimate the successive derivatives of the stationary density f of a strictly stationary and β-mixing process (Xt)t≥0. This process is observed at discrete times t = 0,Δ,...,nΔ. The sampling interval Δ can be fixed or small. We use a penalized least-square approach to compute adaptive estimators. If the derivative f(j)belongs to the Besov space B 2 , ∞ α , then our estimator converges at rate (nΔ)−α/(2α+2j+1). Then we consider a diffusion with known diffusion coefficient....
This work deals with a multivariate random coefficient autoregressive model (RCA) of the first order. A class of modified least-squares estimators of the parameters of the model, originally proposed by Schick for univariate first-order RCA models, is studied under more general conditions. Asymptotic behavior of such estimators is explored, and a lower bound for the asymptotic variance matrix of the estimator of the mean of random coefficient is established. Finite sample properties are demonstrated...
Many statistical applications require establishing central limit theorems for sums/integrals or for quadratic forms , where Xt is a stationary process. A particularly important case is that of Appell polynomials h(Xt) = Pm(Xt), h(Xt,Xs) = Pm,n (Xt,Xs), since the “Appell expansion rank" determines typically the type of central limit theorem satisfied by the functionals ST(h), QT(h). We review and extend here to multidimensional indices, along lines conjectured in [F. Avram and M.S. Taqqu,...
An iterative procedure for computation of stationary density of autoregressive processes is proposed. On an example with exponentially distributed white noise it is demonstrated that the procedure converges geometrically fast. The AR(1) and AR(2) models are analyzed in detail.
A linear moving average model with random coefficients (RCMA) is proposed as more general alternative to usual linear MA models. The basic properties of this model are obtained. Although some model properties are similar to linear case the RCMA model class is too general to find general invertibility conditions. The invertibility of some special examples of RCMA(1) model are investigated in this paper.