Displaying 121 – 140 of 288

Showing per page

Non-negative linear processes

Martin Anděl (1991)

Applications of Mathematics

Conditions under which the linear process is non-negative are investigated in the paper. In the definition of the linear process a strict white noise is used. Explicit results are presented also for the models AR(1) and AR(2).

Nonparametric estimation of the derivatives of the stationary density for stationary processes

Emeline Schmisser (2013)

ESAIM: Probability and Statistics

In this article, our aim is to estimate the successive derivatives of the stationary density f of a strictly stationary and β-mixing process (Xt)t≥0. This process is observed at discrete times t = 0,Δ,...,nΔ. The sampling interval Δ can be fixed or small. We use a penalized least-square approach to compute adaptive estimators. If the derivative f(j)belongs to the Besov space B 2 , α B 2 , ∞ α , then our estimator converges at rate (nΔ)−α/(2α+2j+1). Then we consider a diffusion with known diffusion coefficient....

On a class of estimators in a multivariate RCA(1) model

Zuzana Prášková, Pavel Vaněček (2011)

Kybernetika

This work deals with a multivariate random coefficient autoregressive model (RCA) of the first order. A class of modified least-squares estimators of the parameters of the model, originally proposed by Schick for univariate first-order RCA models, is studied under more general conditions. Asymptotic behavior of such estimators is explored, and a lower bound for the asymptotic variance matrix of the estimator of the mean of random coefficient is established. Finite sample properties are demonstrated...

On a Szegö type limit theorem, the Hölder-Young-Brascamp-Lieb inequality, and the asymptotic theory of integrals and quadratic forms of stationary fields *

Florin Avram, Nikolai Leonenko, Ludmila Sakhno (2010)

ESAIM: Probability and Statistics

Many statistical applications require establishing central limit theorems for sums/integrals S T ( h ) = t I T h ( X t ) d t or for quadratic forms Q T ( h ) = t , s I T b ^ ( t - s ) h ( X t , X s ) d s d t , where Xt is a stationary process. A particularly important case is that of Appell polynomials h(Xt) = Pm(Xt), h(Xt,Xs) = Pm,n (Xt,Xs), since the “Appell expansion rank" determines typically the type of central limit theorem satisfied by the functionals ST(h), QT(h). We review and extend here to multidimensional indices, along lines conjectured in [F. Avram and M.S. Taqqu,...

On calculation of stationary density of autoregressive processes

Jiří Anděl, Karel Hrach (2000)

Kybernetika

An iterative procedure for computation of stationary density of autoregressive processes is proposed. On an example with exponentially distributed white noise it is demonstrated that the procedure converges geometrically fast. The AR(1) and AR(2) models are analyzed in detail.

On invertibility of a random coefficient moving average model

Tomáš Marek (2005)

Kybernetika

A linear moving average model with random coefficients (RCMA) is proposed as more general alternative to usual linear MA models. The basic properties of this model are obtained. Although some model properties are similar to linear case the RCMA model class is too general to find general invertibility conditions. The invertibility of some special examples of RCMA(1) model are investigated in this paper.

Currently displaying 121 – 140 of 288