Displaying 21 – 40 of 169

Showing per page

Chaos expansions and local times.

David Nualart, Josep Vives (1992)

Publicacions Matemàtiques

In this note we prove that the Local Time at zero for a multiparametric Wiener process belongs to the Sobolev space Dk - 1/2 - ε,2 for any ε > 0. We do this computing its Wiener chaos expansion. We see also that this expansion converges almost surely. Finally, using the same technique we prove similar results for a renormalized Local Time for the autointersections of a planar Brownian motion.

Characterization of equilibrium measures for critical reversible Nearest Particle Systems

Thomas Mountford, Li Wu (2008)

Open Mathematics

We show that for critical reversible attractive Nearest Particle Systems all equilibrium measures are convex combinations of the upper invariant equilibrium measure and the point mass at all zeros, provided the underlying renewal sequence possesses moments of order strictly greater than 7 + 41 2 and obeys some natural regularity conditions.

Detection of transient change in mean – a linear behavior inside epidemic interval

Daniela Jarušková (2011)

Kybernetika

A procedure for testing occurrance of a transient change in mean of a sequence is suggested where inside an epidemic interval the mean is a linear function of time points. Asymptotic behavior of considered trimmed maximum-type test statistics is presented. Approximate critical values are obtained using an approximation of exceedance probabilities over a high level by Gaussian fields with a locally stationary structure.

Elliptic gaussian random processes.

Albert Benassi, Stéphane Jaffard, Daniel Roux (1997)

Revista Matemática Iberoamericana

We study the Gaussian random fields indexed by Rd whose covariance is defined in all generality as the parametrix of an elliptic pseudo-differential operator with minimal regularity assumption on the symbol. We construct new wavelet bases adapted to these operators; the decomposition of the field in this corresponding basis yields its iterated logarithm law and its uniform modulus of continuity. We also characterize the local scalings of the fields in terms of the properties of the principal symbol...

Ergodic behaviour of “signed voter models”

G. Maillard, T. S. Mountford (2013)

Annales de l'I.H.P. Probabilités et statistiques

We answer some questions raised by Gantert, Löwe and Steif (Ann. Inst. Henri Poincaré Probab. Stat.41(2005) 767–780) concerning “signed” voter models on locally finite graphs. These are voter model like processes with the difference that the edges are considered to be either positive or negative. If an edge between a site x and a site y is negative (respectively positive) the site y will contribute towards the flip rate of x if and only if the two current spin values are equal (respectively opposed)....

Currently displaying 21 – 40 of 169