The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 201 –
220 of
392
We prove the existence of the conditional intensity of a random measure that is absolutely continuous with respect to its mean; when there exists an L-intensity, , the conditional intensity is obtained at the same time almost surely and in the mean.
We study the almost sure asymptotic behaviour of stochastic approximation algorithms for the search of zero of a real function. The quadratic strong law of large numbers is extended to the powers greater than one. In other words, the convergence of moments in the almost sure central limit theorem (ASCLT) is established. As a by-product of this convergence, one gets another proof of ASCLT for stochastic approximation algorithms. The convergence result is applied to several examples as estimation...
We give a proof of convergence of moments in the Central Limit Theorem (under the Lyapunov-Lindeberg condition) for triangular arrays, yielding a new estimate of the speed of convergence expressed in terms of νth moments. We also give an application to the convergence in the mean of the pth moments of certain random trigonometric polynomials built from triangular arrays of independent random variables, thereby extending some recent work of Borwein and Lockhart.
Convergence of the ensemble Kalman filter in the limit for large ensembles to the Kalman filter is proved. In each step of the filter, convergence of the ensemble sample covariance follows from a weak law of large numbers for exchangeable random variables, the continuous mapping theorem gives convergence in probability of the ensemble members, and bounds on the ensemble then give convergence.
We give necessary and sufficient conditions guaranteeing that the coupling for Lévy processes (with non-degenerate jump part) is successful. Our method relies on explicit formulae for the transition semigroup of a compound Poisson process and earlier results by Mineka and Lindvall–Rogers on couplings of random walks. In particular, we obtain that a Lévy process admits a successful coupling, if it is a strong Feller process or if the Lévy (jump) measure has an absolutely continuous component.
Let X = (Xₜ,ℱₜ) be a continuous BMO-martingale, that is, , where the supremum is taken over all stopping times T. Define the critical exponent b(X) by
,
where the supremum is taken over all stopping times T. Consider the continuous martingale q(X) defined by
.
We use q(X) to characterize the distance between ⟨X⟩ and the class of all bounded martingales in the space of continuous BMO-martingales, and we show that the inequalities
hold for every continuous BMO-martingale X.
Currently displaying 201 –
220 of
392