Displaying 61 – 80 of 172

Showing per page

Martingales relatives

Jacques Azéma, Paul-André Meyer, Marc Yor (1992)

Séminaire de probabilités de Strasbourg

Maximal brownian motions

Jean Brossard, Michel Émery, Christophe Leuridan (2009)

Annales de l'I.H.P. Probabilités et statistiques

Let Z=(X, Y) be a planar brownian motion, 𝒵 the filtration it generates, andBa linear brownian motion in the filtration 𝒵 . One says thatB(or its filtration) is maximal if no other linear 𝒵 -brownian motion has a filtration strictly bigger than that ofB. For instance, it is shown in [In Séminaire de Probabilités XLI 265–278 (2008) Springer] that B is maximal if there exists a linear brownian motion C independent of B and such that the planar brownian motion (B, C) generates the same filtration 𝒵 asZ....

Maximal displacement for bridges of random walks in a random environment

Nina Gantert, Jonathon Peterson (2011)

Annales de l'I.H.P. Probabilités et statistiques

It is well known that the distribution of simple random walks on ℤ conditioned on returning to the origin after 2n steps does not depend on p=P(S1=1), the probability of moving to the right. Moreover, conditioned on {S2n=0} the maximal displacement maxk≤2n|Sk| converges in distribution when scaled by √n (diffusive scaling). We consider the analogous problem for transient random walks in random environments on ℤ. We show that under the quenched law Pω (conditioned on the environment ω), the maximal...

Maximal Weak-Type Inequality for Orthogonal Harmonic Functions and Martingales

Adam Osękowski (2013)

Bulletin of the Polish Academy of Sciences. Mathematics

Assume that u, v are conjugate harmonic functions on the unit disc of ℂ, normalized so that u(0) = v(0) = 0. Let u*, |v|* stand for the one- and two-sided Brownian maxima of u and v, respectively. The paper contains the proof of the sharp weak-type estimate ℙ(|v|* ≥ 1)≤ (1 + 1/3² + 1/5² + 1/7² + ...)/(1 - 1/3² + 1/5² - 1/7² + ...) 𝔼u*. Actually, this estimate is shown to be true in the more general setting of differentially subordinate harmonic functions defined...

Mean quadratic convergence of signed random measures

Pierre Jacob, Paulo Eduardo Oliveira (1991)

Commentationes Mathematicae Universitatis Carolinae

We consider signed Radon random measures on a separable, complete and locally compact metric space and study mean quadratic convergence with respect to vague topology on the space of measures. We prove sufficient conditions in order to obtain mean quadratic convergence. These results are based on some identification properties of signed Radon measures on the product space, also proved in this paper.

Mean stability of a stochastic difference equation

Viorica Mariela Ungureanu, Sui Sun Cheng (2008)

Annales Polonici Mathematici

A simple personal saving model with interest rate based on random fluctuation of national growth rate is considered. We establish connections between the mean stochastic stability of our model and the deterministic stability of related partial difference equations. Then the asymptotic behavior of our stochastic model is studied. Although the model is simple, the techniques for obtaining its properties are not, and we make use of the theory of abstract Banach algebras and weighted spaces. It is hoped...

Currently displaying 61 – 80 of 172