Displaying 81 – 100 of 172

Showing per page

Median for metric spaces

Nacereddine Belili, Henri Heinich (2001)

Applicationes Mathematicae

We consider a Köthe space ( , | | · | | ) of random variables (r.v.) defined on the Lebesgue space ([0,1],B,λ). We show that for any sub-σ-algebra ℱ of B and for all r.v.’s X with values in a separable finitely compact metric space (M,d) such that d(X,x) ∈ for all x ∈ M (we then write X ∈ (M)), there exists a median of X given ℱ, i.e., an ℱ-measurable r.v. Y ∈ (M) such that | | d ( X , Y ) | | | | d ( X , Z ) | | for all ℱ-measurable Z. We develop the basic theory of these medians, we show the convergence of empirical medians and we give some applications....

Metric entropy of convex hulls in Hilbert spaces

Wenbo Li, Werner Linde (2000)

Studia Mathematica

Let T be a precompact subset of a Hilbert space. We estimate the metric entropy of co(T), the convex hull of T, by quantities originating in the theory of majorizing measures. In a similar way, estimates of the Gelfand width are provided. As an application we get upper bounds for the entropy of co(T), T = t 1 , t 2 , . . . , | | t j | | a j , by functions of the a j ’s only. This partially answers a question raised by K. Ball and A. Pajor (cf. [1]). Our estimates turn out to be optimal in the case of slowly decreasing sequences ( a j ) j = 1 .

Metric projections and best approximants in Bochner-Orlicz spaces.

Ryszard Pluciennik, Yuwen Wang (1994)

Revista Matemática de la Universidad Complutense de Madrid

In the first section of this paper there are given criteria for strict convexity and smoothness of the Bochner-Orlicz space with the Orlicz norm as well as the Luxemburg norm. In the second one that geometrical properties are applied to the characterization of metric projections and zero mean valued best approximants to Bochner-Orlicz spaces.

Metric unconditionality and Fourier analysis

Stefan Neuwirth (1998)

Studia Mathematica

We investigate several aspects of almost 1-unconditionality. We characterize the metric unconditional approximation property (umap) in terms of “block unconditionality”. Then we focus on translation invariant subspaces L E p ( ) and C E ( ) of functions on the circle and express block unconditionality as arithmetical conditions on E. Our work shows that the spaces p E ( ) , p an even integer, have a singular behaviour from the almost isometric point of view: property (umap) does not interpolate between L E p ( ) and L E p + 2 ( ) . These...

Currently displaying 81 – 100 of 172