Invariant random fields in vector bundles and application to cosmology
We develop the theory of invariant random fields in vector bundles. The spectral decomposition of an invariant random field in a homogeneous vector bundle generated by an induced representation of a compact connected Lie group G is obtained. We discuss an application to the theory of relic radiation, where G = SO(3). A theorem about equivalence of two different groups of assumptions in cosmological theories is proved.