Présentation unifiée de certaines inégalités de la théorie des martingales
We show how to use the Gaussian HJM model to price modified forward-start options. Using data from the Polish market we calibrate the model and price this exotic option on the term structure. The specific problems of Central Eastern European emerging markets do not permit the use of the popular lognormal models of forward LIBOR or swap rates. We show how to overcome this difficulty.
We apply the results of Baryshnikov, Mayo and Taylor (1998) to calculate non-arbitrage prices of a zero-coupon and coupon CAT bond. First, we derive pricing formulae in the compound doubly stochastic Poisson model framework. Next, we study 10-year catastrophe loss data provided by Property Claim Services and calibrate the pricing model. Finally, we illustrate the values of the CAT bonds tied to the loss data.
We show how to use the Gaussian HJM model to price Polish three-year bonds. %A bond issued by A Polish Treasury bond is treated as a risk-free security.
Let us consider the simplest model of one-dimensional probabilistic cellular automata (PCA). The cells are indexed by the integers, the alphabet is , and all the cells evolve synchronously. The new content of a cell is randomly chosen, independently of the others, according to a distribution depending only on the content of the cell itself and of its right neighbor. There are necessary and sufficient conditions on the four parameters of such a PCA to have a Bernoulli product invariant measure....
In this paper, we propose an extension of a periodic () model to a Markov-switching periodic (-), and provide some probabilistic properties of this class of models. In particular, we address the question of strictly periodically...
We prove the existence and smoothness of density for the solution of a hyperbolic SPDE with free term coefficients depending on time, under hypoelliptic non degeneracy conditions. The result extends those proved in Cattiaux and Mesnager, PTRF123 (2002) 453-483 to an infinite dimensional setting.
La marche aléatoire (ou marche au hasard) est un objet fondamental de la théorie des probabilités. Un des problèmes les plus intéressants pour la marche aléatoire (ainsi que pour le mouvement brownien, son analogue dans un contexte continu) est de savoir comment elle recouvre des ensembles où se trouvent les points qui sont souvent (ou au contraire, rarement) visités, et combien il y a de tels points. Les travaux de Dembo, Peres, Rosen et Zeitouni permettent de résoudre plusieurs conjectures importantes...