On the law of the iterated logarithm for increments of sums of independent random variables.
We prove the existence of a limit distribution of the normalized well-distribution measure (as ) for random binary sequences , by this means solving a problem posed by Alon, Kohayakawa, Mauduit, Moreira and Rödl.
Asymptotic properties of the kth largest values for semi-Pareto processes are investigated. Conditions for convergence in distribution of the kth largest values are given. The obtained limit laws are represented in terms of a compound Poisson distribution.
We consider random walks in strong-mixing random Gibbsian environments in , . Based on regeneration arguments, we will first provide an alternative proof of Rassoul-Agha’s conditional law of large numbers (CLLN) for mixing environment (Electron. Commun. Probab.10(2005) 36–44). Then, using coupling techniques, we show that there is at most one nonzero limiting velocity in high dimensions ().
be a sub-fractional Brownian motion with . We establish the existence, the joint continuity and the Hölder regularity of the local time of . We will also give Chung’s form of the law of iterated logarithm for . This results are obtained with the decomposition of the sub-fractional Brownian motion into the sum of fractional Brownian motion plus a stochastic process with absolutely continuous trajectories. This decomposition is given by Ruiz de Chavez and Tudor [10].
In the present work, we briefly analyze the development of the mathematical theory of records. We first consider applications associated with records. We then view distributional and limit results for record values and times. We further present methods of generation of continuous records. In the end of this work, we discuss some tests based on records.
The maximum M of a critical Bienaymé-Galton-Watson process conditioned on the total progeny N is studied. Imbedding of the process in a random walk is used. A limit theorem for the distribution of M as N → ∞ is proved. The result is trasferred to the non-critical processes. A corollary for the maximal strata of a random rooted labeled tree is obtained.
A method is presented to compute the activity of a radioactive source. The principle of the method is based on the tuning of b, the time constant of the RC circuit of the detector with l being the rate of emission of the source, using a statistical argument.The stochastical process involved refers to the distribution of the following random voltage:Vt = ∑(0 < ti ≤ t) Yi c-b(t - ti)where the ti are Poisson dates of emission and the Yi are random or deterministic pulse heights. The case of...