Displaying 221 – 240 of 612

Showing per page

Fractional Langevin equation with α-stable noise. A link to fractional ARIMA time series

M. Magdziarz, A. Weron (2007)

Studia Mathematica

We introduce a fractional Langevin equation with α-stable noise and show that its solution Y κ ( t ) , t 0 is the stationary α-stable Ornstein-Uhlenbeck-type process recently studied by Taqqu and Wolpert. We examine the asymptotic dependence structure of Y κ ( t ) via the measure of its codependence r(θ₁,θ₂,t). We prove that Y κ ( t ) is not a long-memory process in the sense of r(θ₁,θ₂,t). However, we find two natural continuous-time analogues of fractional ARIMA time series with long memory in the framework of the Langevin...

Full cooperation applied to environmental improvements

Monique Jeanblanc, Rafał M. Łochowski, Wojciech Szatzschneider (2015)

Banach Center Publications

We analyse the case of certificates of environmental improvements and full cooperation of two identical agents. We model pollution levels as geometric Brownian motions with quadratic costs of improvements. Our main result is the construction of the optimal improvements strategy in the case of separate actions, collusive actions and fusion. In certain range of the model parameters, the fusion solution generates lower pollution levels than separate and collusive actions.

Generalized RBSDEs with Random Terminal Time and Applications to PDEs

Katarzyna Jańczak-Borkowska (2011)

Bulletin of the Polish Academy of Sciences. Mathematics

Generalized reflected backward stochastic differential equations have been considered so far only in the case of a deterministic interval. In this paper the existence and uniqueness of solution for generalized reflected backward stochastic differential equations in a convex domain with random terminal time is studied. Applications to the obstacle problem with Neumann boundary conditions for partial differential equations of elliptic type are given.

Currently displaying 221 – 240 of 612