Displaying 261 – 280 of 612

Showing per page

Kolmogorov equation and large-time behaviour for fractional Brownian motion driven linear SDE's

Michal Vyoral (2005)

Applications of Mathematics

We consider a stochastic process X t x which solves an equation d X t x = A X t x d t + Φ d B t H , X 0 x = x where A and Φ are real matrices and B H is a fractional Brownian motion with Hurst parameter H ( 1 / 2 , 1 ) . The Kolmogorov backward equation for the function u ( t , x ) = 𝔼 f ( X t x ) is derived and exponential convergence of probability distributions of solutions to the limit measure is established.

Les p -topologies en théorie du potentiel

Michèle Mastrangelo, Danièle Dehen (1981)

Annales de l'institut Fourier

La topologie fine a été introduite pour fournir un cadre intrinsèque à la théorie du potentiel. Cependant les ouverts fins ne possèdent pas certaines propriétés dont celle de Lindeberg. Cette considération nous conduit à introduire des topologies moins finies appelées p -topologies ( p R + * ). Nous démontrons pour ces p -topologies un critère analogue à celui établi par N. Wiener, pour les ouverts fins. Puis nous nous intéressons à la théorie des équations différentielles stochastiques sur les p -ouverts.

Lyapunov exponents for stochastic differential equations on semi-simple Lie groups

Paulo R. C. Ruffino, Luiz A. B. San Martin (2001)

Archivum Mathematicum

With an intrinsic approach on semi-simple Lie groups we find a Furstenberg–Khasminskii type formula for the limit of the diagonal component in the Iwasawa decomposition. It is an integral formula with respect to the invariant measure in the maximal flag manifold of the group (i.e. the Furstenberg boundary B = G / M A N ). Its integrand involves the Borel type Riemannian metric in the flag manifolds. When applied to linear stochastic systems which generate a semi-simple group the formula provides a diagonal matrix...

Markov chains approximation of jump–diffusion stochastic master equations

Clément Pellegrini (2010)

Annales de l'I.H.P. Probabilités et statistiques

Quantum trajectories are solutions of stochastic differential equations obtained when describing the random phenomena associated to quantum continuous measurement of open quantum system. These equations, also called Belavkin equations or Stochastic Master equations, are usually of two different types: diffusive and of Poisson-type. In this article, we consider more advanced models in which jump–diffusion equations appear. These equations are obtained as a continuous time limit of martingale problems...

Currently displaying 261 – 280 of 612