Displaying 1501 – 1520 of 1721

Showing per page

SURE shrinkage of gaussian paths and signal identification

Nicolas Privault, Anthony Réveillac (2011)

ESAIM: Probability and Statistics

Using integration by parts on Gaussian space we construct a Stein Unbiased Risk Estimator (SURE) for the drift of Gaussian processes, based on their local and occupation times. By almost-sure minimization of the SURE risk of shrinkage estimators we derive an estimation and de-noising procedure for an input signal perturbed by a continuous-time Gaussian noise.

SURE shrinkage of Gaussian paths and signal identification*

Nicolas Privault, Anthony Réveillac (2012)

ESAIM: Probability and Statistics

Using integration by parts on Gaussian space we construct a Stein Unbiased Risk Estimator (SURE) for the drift of Gaussian processes, based on their local and occupation times. By almost-sure minimization of the SURE risk of shrinkage estimators we derive an estimation and de-noising procedure for an input signal perturbed by a continuous-time Gaussian noise.

Surface measures and convergence of the Ornstein-Uhlenbeck semigroup in Wiener spaces

Luigi Ambrosio, Alessio Figalli (2011)

Annales de la faculté des sciences de Toulouse Mathématiques

We study points of density 1 / 2 of sets of finite perimeter in infinite-dimensional Gaussian spaces and prove that, as in the finite-dimensional theory, the surface measure is concentrated on this class of points. Here density 1 / 2 is formulated in terms of the pointwise behaviour of the Ornstein-Uhlembeck semigroup.

Systemic risk through contagion in a core-periphery structured banking network

Oliver Kley, Claudia Klüppelberg, Lukas Reichel (2015)

Banach Center Publications

We contribute to the understanding of how systemic risk arises in a network of credit-interlinked agents. Motivated by empirical studies we formulate a network model which, despite its simplicity, depicts the nature of interbank markets better than a symmetric model. The components of a vector Ornstein-Uhlenbeck process living on the nodes of the network describe the financial robustnesses of the agents. For this system, we prove a LLN for growing network size leading to a propagation of chaos result....

Currently displaying 1501 – 1520 of 1721