Large deviation principle of occupation measure for stochastic Burgers equation
Supposing that the metric space in question supports a fractional diffusion, we prove that after introducing an appropriate multiplicative factor, the Gagliardo seminorms of a function f ∈ L²(E,μ) have the property , where ℰ is the Dirichlet form relative to the fractional diffusion.
We obtain a local limit theorem for the laws of a class of Brownian additive functionals and we apply this result to a penalisation problem. We study precisely the case of the additive functional: . On the other hand, we describe Feynman-Kac type penalisation results for long Brownian bridges thus completing some similar previous study for standard Brownian motion (see [B. Roynette, P. Vallois and M. Yor, Studia Sci. Math. Hung.43 (2006) 171–246]).
We investigate the dissipativity properties of a class of scalar second order parabolic partial differential equations with time-dependent coefficients. We provide explicit condition on the drift term which ensure that the relative entropy of one particular orbit with respect to some other one decreases to zero. The decay rate is obtained explicitly by the use of a Sobolev logarithmic inequality for the associated semigroup, which is derived by an adaptation of Bakry's Γ-calculus. As a byproduct,...