Page 1

Displaying 1 – 4 of 4

Showing per page

Marking (1, 2) points of the brownian web and applications

C. M. Newman, K. Ravishankar, E. Schertzer (2010)

Annales de l'I.H.P. Probabilités et statistiques

The brownian web (BW), which developed from the work of Arratia and then Tóth and Werner, is a random collection of paths (with specified starting points) in one plus one dimensional space–time that arises as the scaling limit of the discrete web (DW) of coalescing simple random walks. Two recently introduced extensions of the BW, the brownian net (BN) constructed by Sun and Swart, and the dynamical brownian web (DyBW) proposed by Howitt and Warren, are (or should be) scaling limits of corresponding...

Modelling the Spread of Infectious Diseases in Complex Metapopulations

J. Saldaña (2010)

Mathematical Modelling of Natural Phenomena

Two main approaches have been considered for modelling the dynamics of the SIS model on complex metapopulations, i.e, networks of populations connected by migratory flows whose configurations are described in terms of the connectivity distribution of nodes (patches) and the conditional probabilities of connections among classes of nodes sharing the same degree. In the first approach migration and transmission/recovery process alternate sequentially,...

Multi-scaled diffusion-approximation. Applications to wave propagation in random media.

Josselin Garnier (2010)

ESAIM: Probability and Statistics

In this paper a multi-scaled diffusion-approximation theorem is proved so as to unify various applications in wave propagation in random media: transmission of optical modes through random planar waveguides; time delay in scattering for the linear wave equation; decay of the transmission coefficient for large lengths with fixed output and phase difference in weakly nonlinear random media.

Currently displaying 1 – 4 of 4

Page 1