Page 1

Displaying 1 – 5 of 5

Showing per page

Diffusions with a nonlinear irregular drift coefficient and probabilistic interpretation of generalized Burgers' equations

Benjamin Jourdain (2010)

ESAIM: Probability and Statistics

We prove existence and uniqueness for two classes of martingale problems involving a nonlinear but bounded drift coefficient. In the first class, this coefficient depends on the time t, the position x and the marginal of the solution at time t. In the second, it depends on t, x and p(t,x), the density of the time marginal w.r.t. Lebesgue measure. As far as the dependence on t and x is concerned, no continuity assumption is made. The results, first proved for the identity diffusion matrix,...

Drift, draft and structure: some mathematical models of evolution

Alison M. Etheridge (2008)

Banach Center Publications

Understanding the evolution of individuals which live in a structured and fluctuating environment is of central importance in mathematical population genetics. Here we outline some of the mathematical challenges arising from modelling structured populations, primarily focussing on the interplay between forwards in time models for the evolution of the population and backwards in time models for the genealogical trees relating individuals in a sample from that population. In addition to classical...

Currently displaying 1 – 5 of 5

Page 1