On modelling long term stock returns with ergodic diffusion processes: arbitrage and arbitrage-free specifications.
We develop the analogy between self-gravitating Brownian particles and bacterial populations. In the high friction limit, the self-gravitating Brownian gas is described by the Smoluchowski-Poisson system. These equations can develop a self-similar collapse leading to a finite time singularity. Coincidentally, the Smoluchowski-Poisson system corresponds to a simplified version of the Keller-Segel model of bacterial populations. In this biological context, it describes the chemotactic aggregation...
We propose new copulae to model the dependence between two Brownian motions and to control the distribution of their difference. Our approach is based on the copula between the Brownian motion and its reflection. We show that the class of admissible copulae for the Brownian motions are not limited to the class of Gaussian copulae and that it also contains asymmetric copulae. These copulae allow for the survival function of the difference between two Brownian motions to have higher value in the right...
We derive a model based on the structure of dependence between a Brownian motion and its reflection according to a barrier. The structure of dependence presents two states of correlation: one of comonotonicity with a positive correlation and one of countermonotonicity with a negative correlation. This model of dependence between two Brownian motions B1 and B2 allows for the value of [...] to be higher than 1/2 when x is close to 0, which is not the case when the dependence is modeled by a constant...