Displaying 81 – 100 of 104

Showing per page

The Kendall theorem and its application to the geometric ergodicity of Markov chains

Witold Bednorz (2013)

Applicationes Mathematicae

We give an improved quantitative version of the Kendall theorem. The Kendall theorem states that under mild conditions imposed on a probability distribution on the positive integers (i.e. a probability sequence) one can prove convergence of its renewal sequence. Due to the well-known property (the first entrance last exit decomposition) such results are of interest in the stability theory of time-homogeneous Markov chains. In particular this approach may be used to measure rates of convergence of...

The scaling limits of a heavy tailed Markov renewal process

Julien Sohier (2013)

Annales de l'I.H.P. Probabilités et statistiques

In this paper we consider heavy tailed Markov renewal processes and we prove that, suitably renormalised, they converge in law towards the α -stable regenerative set. We then apply these results to the strip wetting model which is a random walk S constrained above a wall and rewarded or penalized when it hits the strip [ 0 , ) × [ 0 , a ] where a is a given positive number. The convergence result that we establish allows to characterize the scaling limit of this process at criticality.

The weak convergence of regenerative processes using some excursion path decompositions

Amaury Lambert, Florian Simatos (2014)

Annales de l'I.H.P. Probabilités et statistiques

We consider regenerative processes with values in some general Polish space. We define their ε -big excursions as excursions e such that ϕ ( e ) g t ; ε , where ϕ is some given functional on the space of excursions which can be thought of as, e.g., the length or the height of e . We establish a general condition that guarantees the convergence of a sequence of regenerative processes involving the convergence of ε -big excursions and of their endpoints, for all ε in a set whose closure contains 0 . Finally, we provide...

Two mutually rarefied renewal processes

Ilona Kopocińska (1994)

Applicationes Mathematicae

Let us consider two independent renewal processes generated by appropriate sequences of life times. We say that a renewal time is accepted if in the time between a signal and the preceding one, some signal of the second process occurs. Our purpose is to analyze the sequences of accepted renewals. For simplicity we consider continuous and discrete time separately. In the first case we mainly consider the renewal process rarefied by the Poisson process, in the second we analyze the process generated...

Universal rates for estimating the residual waiting time in an intermittent way

Gusztáv Morvai, Benjamin Weiss (2020)

Kybernetika

A simple renewal process is a stochastic process { X n } taking values in { 0 , 1 } where the lengths of the runs of 1 ’s between successive zeros are independent and identically distributed. After observing X 0 , X 1 , ... X n one would like to estimate the time remaining until the next occurrence of a zero, and the problem of universal estimators is to do so without prior knowledge of the distribution of the process. We give some universal estimates with rates for the expected time to renewal as well as for the conditional distribution...

Currently displaying 81 – 100 of 104