An interacting particle model of adsorption
We study the upper tails for the energy of a randomly charged symmetric and transient random walk. We assume that only charges on the same site interact pairwise. We consider annealed estimates, that is when we average over both randomness, in dimension three or more. We obtain a large deviation principle, and an explicit rate function for a large class of charge distributions.
We study a random walk pinning model, where conditioned on a simple random walk Y on ℤd acting as a random medium, the path measure of a second independent simple random walk X up to time t is Gibbs transformed with hamiltonian −Lt(X, Y), where Lt(X, Y) is the collision local time between X and Y up to time t. This model arises naturally in various contexts, including the study of the parabolic Anderson model with moving catalysts, the parabolic Anderson model with brownian noise, and the directed...
We study a continuous time growth process on the -dimensional hypercubic lattice , which admits a phenomenological interpretation as the combustion reaction , where represents heat particles and inert particles. This process can be described as an interacting particle system in the following way: at time 0 a simple symmetric continuous time random walk of total jump rate one begins to move from the origin of the hypercubic lattice; then, as soon as any random walk visits a site previously...
We study large deviations principles for N random processes on the lattice ℤd with finite time horizon [0, β] under a symmetrised measure where all initial and terminal points are uniformly averaged over random permutations. That is, given a permutation σ of N elements and a vector (x1, …, xN) of N initial points we let the random processes terminate in the points (xσ(1), …, xσ(N)) and then sum over all possible permutations and initial points, weighted with an initial distribution. We prove level-two...
The aim of this paper is to extend the well-known asymptotic shape result for first-passage percolation on to first-passage percolation on a random environment given by the infinite cluster of a supercritical Bernoulli percolation model. We prove the convergence of the renormalized set of wet vertices to a deterministic shape that does not depend on the realization of the infinite cluster. As a special case of our result, we obtain an asymptotic shape theorem for the chemical distance in supercritical...
The aim of this paper is to extend the well-known asymptotic shape result for first-passage percolation on to first-passage percolation on a random environment given by the infinite cluster of a supercritical Bernoulli percolation model. We prove the convergence of the renormalized set of wet vertices to a deterministic shape that does not depend on the realization of the infinite cluster. As a special case of our result, we obtain an asymptotic shape theorem for the chemical distance in supercritical...
We establish necessary and sufficient conditions for the convergence (in the sense of finite dimensional distributions) of multiplicative measures on the set of partitions. The multiplicative measures depict distributions of component spectra of random structures and also the equilibria of classic models of statistical mechanics and stochastic processes of coagulation-fragmentation. We show that the convergence of multiplicative measures is equivalent to the asymptotic independence of counts of...