Dissipative systems
In this note, we prove a version of the conjectured duality for Schramm-Loewner Evolutions, by establishing exact identities in distribution between some boundary arcs of chordal , , and appropriate versions of , .
In dynamical percolation, the status of every bond is refreshed according to an independent Poisson clock. For graphs which do not percolate at criticality, the dynamical sensitivity of this property was analyzed extensively in the last decade. Here we focus on graphs which percolate at criticality, and investigate the dynamical sensitivity of the infinite cluster. We first give two examples of bounded degree graphs, one which percolates for all times at criticality and one which has exceptional...
Edge-reinforced random walk (ERRW), introduced by Coppersmith and Diaconis in 1986 [8], is a random process which takes values in the vertex set of a graph and is more likely to cross edges it has visited before. We show that it can be represented in terms of a vertex-reinforced jump process (VRJP) with independent gamma conductances; the VRJP was conceived by Werner and first studied by Davis and Volkov [10, 11], and is a continuous-time process favouring sites with more local time. We calculate,...
We prove the Einstein relation, relating the velocity under a small perturbation to the diffusivity in equilibrium, for certain biased random walks on Galton–Watson trees. This provides the first example where the Einstein relation is proved for motion in random media with arbitrarily slow traps.