The single server queue with Erlang input and semi-Markov service times
We consider a catalytic branching random walk on that branches at the origin only. In the supercritical regime we establish a law of large number for the maximal position : For some constant , almost surely on the set of infinite number of visits of the origin. Then we determine all possible limiting laws for as goes to infinity.
We show that for percolation on any transitive graph, the triangle condition implies the open triangle condition.
For a set A ⊂ C[0, ∞), we give new results on the growth of the number of particles in a branching Brownian motion whose paths fall within A. We show that it is possible to work without rescaling the paths. We give large deviations probabilities as well as a more sophisticated proof of a result on growth in the number of particles along certain sets of paths. Our results reveal that the number of particles can oscillate dramatically. We also obtain new results on the number of particles near the...