Asymptotic theory of parameter estimation for Gauss-Markov random fields
This paper introduces a computationally tractable density estimator that has the same asymptotic variance as the classical Nadaraya-Watson density estimator but whose asymptotic bias is zero. We achieve this result using a two stage estimator that applies a multiplicative bias correction to an oversmooth pilot estimator. Simulations show that our asymptotic results are available for samples as low as n = 50, where we see an improvement of as much as 20% over the traditionnal estimator.
By using three theorems (Oktaba and Kieloch [3]) and Theorem 2.2 (Srivastava and Khatri [4]) three results are given in formulas (2.1), (2.8) and (2.11). They present asymptotically normal confidence intervals for the determinant in the MGM model , , scalar , with a matrix . A known random matrix has the expected value , where the matrix is a known matrix of an experimental design, is an unknown matrix of parameters and is the covariance matrix of being the symbol of the Kronecker...
In this paper, the filtering problem is revisited in the basic Gaussian homogeneous linear system driven by fractional Brownian motions. We exhibit a simple approximate filter which is asymptotically optimal in the sense that, when the observation time tends to infinity, the variance of the corresponding filtering error converges to the same limit as for the exact optimal filter.