Displaying 21 – 40 of 44

Showing per page

On the foundations of statistics and decision theory.

José M. Bernardo, Javier Girón (1983)

Trabajos de Estadística e Investigación Operativa

An elementary axiomatic foundation for decision theory is presented at a general enough level to cover standard applications of Bayesian methods. The intuitive meaning of both axioms and results is stressed. It is argued that statistical inference is a particular decision problem to which the axiomatic argument fully applies.

Optimal alternative robustness in Bayesian Decision Theory.

Fabrizio Ruggeri, Jacinto Martín, David Ríos Insua (2003)

RACSAM

In Martin et al (2003), we suggested an approach to general robustness studies in Bayesian Decision Theory and Inference, based on ε-contamination neighborhoods. In this note, we generalise the results considering neighborhoods based on norms, specifically, the supremum norm for utilities and the total variation norm for probability distributions. We provide tools to detect changes in preferences between alternatives under perturbations of the prior and/or the utility and the most sensitive direction....

Optimal sequential multiple hypothesis testing in presence of control variables

Andrey Novikov (2009)

Kybernetika

Suppose that at any stage of a statistical experiment a control variable X that affects the distribution of the observed data Y at this stage can be used. The distribution of Y depends on some unknown parameter θ , and we consider the problem of testing multiple hypotheses H 1 : θ = θ 1 , H 2 : θ = θ 2 , ... , H k : θ = θ k allowing the data to be controlled by X , in the following sequential context. The experiment starts with assigning a value X 1 to the control variable and observing Y 1 as a response. After some analysis, another value X 2 for...

Optimal sequential multiple hypothesis tests

Andrey Novikov (2009)

Kybernetika

This work deals with a general problem of testing multiple hypotheses about the distribution of a discrete-time stochastic process. Both the Bayesian and the conditional settings are considered. The structure of optimal sequential tests is characterized.

Currently displaying 21 – 40 of 44