Minimax nonparametric prediction
Let U₀ be a random vector taking its values in a measurable space and having an unknown distribution P and let U₁,...,Uₙ and be independent, simple random samples from P of size n and m, respectively. Further, let be real-valued functions defined on the same space. Assuming that only the first sample is observed, we find a minimax predictor d⁰(n,U₁,...,Uₙ) of the vector with respect to a quadratic errors loss function.