Displaying 161 – 180 of 311

Showing per page

Minimax nonparametric prediction

Maciej Wilczyński (2001)

Applicationes Mathematicae

Let U₀ be a random vector taking its values in a measurable space and having an unknown distribution P and let U₁,...,Uₙ and V , . . . , V m be independent, simple random samples from P of size n and m, respectively. Further, let z , . . . , z k be real-valued functions defined on the same space. Assuming that only the first sample is observed, we find a minimax predictor d⁰(n,U₁,...,Uₙ) of the vector Y m = j = 1 m ( z ( V j ) , . . . , z k ( V j ) ) T with respect to a quadratic errors loss function.

Minimax Prediction for the Multinomial and Multivariate Hypergeometric Distributions

Alicja Jokiel-Rokita (1998)

Applicationes Mathematicae

A problem of minimax prediction for the multinomial and multivariate hypergeometric distribution is considered. A class of minimax predictors is determined for estimating linear combinations of the unknown parameter and the random variable having the multinomial or the multivariate hypergeometric distribution.

Minimax prediction under random sample size

Alicja Jokiel-Rokita (2002)

Applicationes Mathematicae

A class of minimax predictors of random variables with multinomial or multivariate hypergeometric distribution is determined in the case when the sample size is assumed to be a random variable with an unknown distribution. It is also proved that the usual predictors, which are minimax when the sample size is fixed, are not minimax, but they remain admissible when the sample size is an ancillary statistic with unknown distribution.

Minimax theorems with applications to convex metric spaces

Jürgen Kindler (1995)

Colloquium Mathematicae

A minimax theorem is proved which contains a recent result of Pinelis and a version of the classical minimax theorem of Ky Fan as special cases. Some applications to the theory of convex metric spaces (farthest points, rendez-vous value) are presented.

Modelos para la asignación de tratamiento.

M.ª Pilar García-Carrasco Aponte (1986)

Trabajos de Estadística

In this paper the problem of treatment allocation is studied from the predictive decision theoretical point of view. The utility of obtaining some final characteristics y when a treatment a is applied to a person with initial facet x is assumed to be known. The problem is then reduced to the derivation of the expected utility of a given x, by means of either prognostic or diagnostic distributions.To find prognostic distributions, regression models and appropriate partitions of the population, according...

Modified minimax quadratic estimation of variance components

Viktor Witkovský (1998)

Kybernetika

The paper deals with modified minimax quadratic estimation of variance and covariance components under full ellipsoidal restrictions. Based on the, so called, linear approach to estimation variance components, i. e. considering useful local transformation of the original model, we can directly adopt the results from the linear theory. Under normality assumption we can can derive the explicit form of the estimator which is formally find to be the Kuks–Olman type estimator.

Monotonicity of Bayes estimators

Piotr Bolesław Nowak (2013)

Applicationes Mathematicae

Let X=(X₁,..., Xₙ) be a sample from a distribution with density f(x;θ), θ ∈ Θ ⊂ ℝ. In this article the Bayesian estimation of the parameter θ is considered. We examine whether the Bayes estimators of θ are pointwise ordered when the prior distributions are partially ordered. Various cases of loss function are studied. A lower bound for the survival function of the normal distribution is obtained.

Neural network realizations of Bayes decision rules for exponentially distributed data

Igor Vajda, Belomír Lonek, Viktor Nikolov, Arnošt Veselý (1998)

Kybernetika

For general Bayes decision rules there are considered perceptron approximations based on sufficient statistics inputs. A particular attention is paid to Bayes discrimination and classification. In the case of exponentially distributed data with known model it is shown that a perceptron with one hidden layer is sufficient and the learning is restricted to synaptic weights of the output neuron. If only the dimension of the exponential model is known, then the number of hidden layers will increase...

Node assignment problem in Bayesian networks

Joanna Polanska, Damian Borys, Andrzej Polanski (2006)

International Journal of Applied Mathematics and Computer Science

This paper deals with the problem of searching for the best assignments of random variables to nodes in a Bayesian network (BN) with a given topology. Likelihood functions for the studied BNs are formulated, methods for their maximization are described and, finally, the results of a study concerning the reliability of revealing BNs' roles are reported. The results of BN node assignments can be applied to problems of the analysis of gene expression profiles.

Numerical methods for linear minimax estimation

Norbert Gaffke, Berthold Heiligers (2000)

Discussiones Mathematicae Probability and Statistics

We discuss two numerical approaches to linear minimax estimation in linear models under ellipsoidal parameter restrictions. The first attacks the problem directly, by minimizing the maximum risk among the estimators. The second method is based on the duality between minimax and Bayes estimation, and aims at finding a least favorable prior distribution.

Objective Bayesian point and region estimation in location-scale models.

José M. Bernardo (2007)

SORT

Point and region estimation may both be described as specific decision problems. In point estimation, the action space is the set of possible values of the quantity on interest; in region estimation, the action space is the set of its possible credible regions. Foundations dictate that the solution to these decision problems must depend on both the utility function and the prior distribution. Estimators intended for general use should surely be invariant under one-to-one transformations, and this...

On a robust significance test for the Cox regression model

Tadeusz Bednarski, Filip Borowicz (2006)

Discussiones Mathematicae Probability and Statistics

A robust significance testing method for the Cox regression model, based on a modified Wald test statistic, is discussed. Using Monte Carlo experiments the asymptotic behavior of the modified robust versions of the Wald statistic is compared with the standard significance test for the Cox model based on the log likelihood ratio test statistic.

Currently displaying 161 – 180 of 311