Displaying 61 – 80 of 94

Showing per page

Statistical analysis of periodic autoregression

Jiří Anděl (1983)

Aplikace matematiky

Methods for estimating parameters and testing hypotheses in a periodic autoregression are investigated in the paper. The parameters of the model are supposed to be random variables with a vague prior density. The innovation process can have either constant or periodically changing variances. Theoretical results are demonstrated on two simulated series and on two sets of real data.

Statistical choice of non-separated one-parameter models.

José Tiago de Oliveira (1985)

Trabajos de Estadística e Investigación Operativa

The purpose of this paper is to study the asymptotic choice between two models {F(x|α), α ∈ A ⊆ R} and {G(x|β), β ∈ B ⊆ R}, A and B being intervals but such that for (α0, β0}, and only for this pair, we have F(x|α0) = G(x|β0).

Statistical Inference about the Drift Parameter in Stochastic Processes

David Stibůrek (2013)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

In statistical inference on the drift parameter a in the Wiener process with a constant drift Y t = a t + W t there is a large number of options how to do it. We may, for example, base this inference on the properties of the standard normal distribution applied to the differences between the observed values of the process at discrete times. Although such methods are very simple, it turns out that more appropriate is to use the sequential methods. For the hypotheses testing about the drift parameter it is more...

Stochastic algorithm for Bayesian mixture effect template estimation

Stéphanie Allassonnière, Estelle Kuhn (2010)

ESAIM: Probability and Statistics

The estimation of probabilistic deformable template models in computer vision or of probabilistic atlases in Computational Anatomy are core issues in both fields. A first coherent statistical framework where the geometrical variability is modelled as a hidden random variable has been given by [S. Allassonnière et al., J. Roy. Stat. Soc.69 (2007) 3–29]. They introduce a Bayesian approach and mixture of them to estimate deformable template models. A consistent stochastic algorithm has been introduced...

Strong law of large numbers for additive extremum estimators

João Tiago Mexia, Pedro Corte Real (2001)

Discussiones Mathematicae Probability and Statistics

Extremum estimators are obtained by maximizing or minimizing a function of the sample and of the parameters relatively to the parameters. When the function to maximize or minimize is the sum of subfunctions each depending on one observation, the extremum estimators are additive. Maximum likelihood estimators are extremum additive whenever the observations are independent. Another instance of additive extremum estimators are the least squares estimators for multiple regressions when the usual assumptions...

Strong uniform consistency rates of some characteristics of the conditional distribution estimator in the functional single-index model

Amina Angelika Bouchentouf, Tayeb Djebbouri, Abbes Rabhi, Khadidja Sabri (2014)

Applicationes Mathematicae

The aim of this paper is to establish a nonparametric estimate of some characteristics of the conditional distribution. Kernel type estimators for the conditional cumulative distribution function and for the successive derivatives of the conditional density of a scalar response variable Y given a Hilbertian random variable X are introduced when the observations are linked with a single-index structure. We establish the pointwise almost complete convergence and the uniform almost complete convergence...

Currently displaying 61 – 80 of 94