An asymptotic test for quantitative gene detection
An efficient estimator for the expectation is constructed, where is a Gibbs random field, and is a local statistic, i. e. a functional depending on a finite number of coordinates. The estimator coincides with the empirical estimator under the conditions stated in Greenwood and Wefelmeyer [6], and covers the known special cases, namely the von Mises statistic for the i.i.d. underlying fields and the case of one-dimensional Markov chains.
In this paper we consider an exploratory canonical analysis approach for multinomial population based on the -divergence measure. We define the restricted minimum -divergence estimator, which is seen to be a generalization of the restricted maximum likelihood estimator. This estimator is then used in -divergence goodness-of-fit statistics which is the basis of two new families of statistics for solving the problem of selecting the number of significant correlations as well as the appropriateness...
En este trabajo se demuestra que las soluciones clásicas a los contrastes de hipótesis paramétricos son casos particulares de la solución bayesiana a un problema de decisión con dos alternativas, en el que el incremento de utilidad por rechazar la hipótesis nula cuando es falsa es una función lineal de la discrepancia entre el modelo paramétrico aceptado y el más verosímil de los modelos compatibles con la hipótesis nula.
In the printed version of the paper Bayesian survival analysis based on the Rayleigh model (Trabajos de Estadística Vol. 5, no. 1, 1990), figures num. 1, 2 and 3 mentioned on page 91 were not printed with the paper. That may create confusion and problems for the readers in understanding the conclusions, as in the absence of figures the paper is incomplete. For this reason we publish the figures in this issue.
En este trabajo se introduce el modelo ARE(I) con indicador de nivel mínimo J.l, parámetro que generaliza el modelo ARO) con errores exponenciales y se analiza desde un punto de vista bayesiano, obteniéndose una familia de distribuciones conjugadas para el hiperparámetro que describe el modelo.
Se calculan las distribuciones menos informativas cuando se utilizan como medidas de información la entropía útil y la energía informacional de Onicescu, tanto si el espacio de estados Θ es continuo (intervalo de R) como si es discreto y suponiendo que el decisor posee información acerca de algunas características de la distribución a priori (monotonías de la función de densidad, probabilidades de subconjuntos de Θ, monotonías o cotas de la razón de fallo).
This study seeks to analyse some important questions related to the Stochastic Frontier Model, such as the method proposed by Jondrow et al (1982) to separate the error term into its two components, and the measure of efficiency given by Timmer (1971). To this purpose, a Monte Carlo experiment has been carried out using the Half-Normal and Normal-Exponential specifications throughout the rank of the γ parameter. The estimation errors have been eliminated, so that the intrinsic variability of the...