Limit state analysis on the un-repeated multiple selection bounded confidence model
In this paper, we study the opinion evolution over social networks with a bounded confidence rule. Node initial opinions are independently and identically distributed. At each time step, each node reviews the average opinions of several different randomly selected agents and updates its opinion only when the difference between its opinion and the average is below a threshold. First of all, we provide probability bounds of the opinion convergence and the opinion consensus, are both nontrivial events...