Previous Page 3

Displaying 41 – 53 of 53

Showing per page

Product of exponentials and spectral radius of random k-circulants

Arup Bose, Rajat Subhra Hazra, Koushik Saha (2012)

Annales de l'I.H.P. Probabilités et statistiques

We consider n × n random k-circulant matrices with n → ∞ and k = k(n) whose input sequence {al}l≥0 is independent and identically distributed (i.i.d.) random variables with finite (2 + δ) moment. We study the asymptotic distribution of the spectral radius, when n = kg + 1. For this, we first derive the tail behaviour of the g fold product of i.i.d. exponential random variables. Then using this tail behaviour result and appropriate normal approximation techniques, we show that with appropriate scaling...

Shape factor extremes for prolate spheroids

Daniel Hlubinka (2006)

Kybernetika

Microscopic prolate spheroids in a given volume of an opaque material are considered. The extremes of the shape factor of the spheroids are studied. The profiles of the spheroids are observed on a random planar section and based on these observations we want to estimate the distribution of the extremal shape factor of the spheroids. We show that under a tail uniformity condition the Maximum domain of attraction is stable. We discuss the normalising constants (n.c.) for the extremes of the spheroid...

Stationarity and invertibility of a dynamic correlation matrix

Michael McAleer (2018)

Kybernetika

One of the most widely-used multivariate conditional volatility models is the dynamic conditional correlation (or DCC) specification. However, the underlying stochastic process to derive DCC has not yet been established, which has made problematic the derivation of asymptotic properties of the Quasi-Maximum Likelihood Estimators (QMLE). To date, the statistical properties of the QMLE of the DCC parameters have purportedly been derived under highly restrictive and unverifiable regularity conditions....

Stereology of extremes; size of spheroids

Daniel Hlubinka (2003)

Mathematica Bohemica

The prediction of size extremes in Wicksell’s corpuscle problem with oblate spheroids is considered. Three-dimensional particles are represented by their planar sections (profiles) and the problem is to predict their extremal size under the assumption of a constant shape factor. The stability of the domain of attraction of the size extremes is proved under the tail equivalence condition. A simple procedure is proposed of evaluating the normalizing constants from the tail behaviour of appropriate...

The generalized FGM distribution and its application to stereology of extremes

Daniel Hlubinka, Samuel Kotz (2010)

Applications of Mathematics

The generalized FGM distribution and related copulas are used as bivariate models for the distribution of spheroidal characteristics. It is shown that this model is suitable for the study of extremes of the 3D spheroidal particles observed in terms of their random planar sections.

Currently displaying 41 – 53 of 53

Previous Page 3