Previous Page 2

Displaying 21 – 36 of 36

Showing per page

Model selection for quantum homodyne tomography

Jonas Kahn (2009)

ESAIM: Probability and Statistics

This paper deals with a non-parametric problem coming from physics, namely quantum tomography. That consists in determining the quantum state of a mode of light through a homodyne measurement. We apply several model selection procedures: penalized projection estimators, where we may use pattern functions or wavelets, and penalized maximum likelihood estimators. In all these cases, we get oracle inequalities. In the former we also have a polynomial rate of convergence for the non-parametric problem....

Model selection for regression on a random design

Yannick Baraud (2002)

ESAIM: Probability and Statistics

We consider the problem of estimating an unknown regression function when the design is random with values in k . Our estimation procedure is based on model selection and does not rely on any prior information on the target function. We start with a collection of linear functional spaces and build, on a data selected space among this collection, the least-squares estimator. We study the performance of an estimator which is obtained by modifying this least-squares estimator on a set of small probability....

Model selection for regression on a random design

Yannick Baraud (2010)

ESAIM: Probability and Statistics

We consider the problem of estimating an unknown regression function when the design is random with values in k . Our estimation procedure is based on model selection and does not rely on any prior information on the target function. We start with a collection of linear functional spaces and build, on a data selected space among this collection, the least-squares estimator. We study the performance of an estimator which is obtained by modifying this least-squares estimator on a set of small...

Moderate deviations for the Durbin–Watson statistic related to the first-order autoregressive process

S. Valère Bitseki Penda, Hacène Djellout, Frédéric Proïa (2014)

ESAIM: Probability and Statistics

The purpose of this paper is to investigate moderate deviations for the Durbin–Watson statistic associated with the stable first-order autoregressive process where the driven noise is also given by a first-order autoregressive process. We first establish a moderate deviation principle for both the least squares estimator of the unknown parameter of the autoregressive process as well as for the serial correlation estimator associated with the driven noise. It enables us to provide a moderate deviation...

Multidimensional limit theorems for smoothed extreme value estimates of point processes boundaries

Ludovic Menneteau (2008)

ESAIM: Probability and Statistics

In this paper, we give sufficient conditions to establish central limit theorems and moderate deviation principle for a class of support estimates of empirical and Poisson point processes. The considered estimates are obtained by smoothing some bias corrected extreme values of the point process. We show how the smoothing permits to obtain Gaussian asymptotic limits and therefore pointwise confidence intervals. Some unidimensional and multidimensional examples are provided.

Multivariate Extreme Value Theory - A Tutorial with Applications to Hydrology and Meteorology

Anne Dutfoy, Sylvie Parey, Nicolas Roche (2014)

Dependence Modeling

In this paper, we provide a tutorial on multivariate extreme value methods which allows to estimate the risk associated with rare events occurring jointly. We draw particular attention to issues related to extremal dependence and we insist on the asymptotic independence feature. We apply the multivariate extreme value theory on two data sets related to hydrology and meteorology: first, the joint flooding of two rivers, which puts at risk the facilities lying downstream the confluence; then the joint...

Currently displaying 21 – 36 of 36

Previous Page 2