Page 1 Next

Displaying 1 – 20 of 33

Showing per page

Parameter estimation of S-distributions with alternating regression.

I-Chun Chou, Harald Martens, Eberhard O. Voit (2007)

SORT

We propose a novel 3-way alternating regression (3-AR) method as an effective strategy for the estimation of parameter values in S-distributions from frequency data. The 3-AR algorithm is very fast and performs well for error-free distributions and artificial noisy data obtained as random samples generated from S-distributions, as well as for traditional statistical distributions and for actual observation data. In rare cases where the algorithm does not immediately converge, its enormous speed...

Partition-based conditional density estimation

S. X. Cohen, E. Le Pennec (2013)

ESAIM: Probability and Statistics

We propose a general partition-based strategy to estimate conditional density with candidate densities that are piecewise constant with respect to the covariate. Capitalizing on a general penalized maximum likelihood model selection result, we prove, on two specific examples, that the penalty of each model can be chosen roughly proportional to its dimension. We first study a classical strategy in which the densities are chosen piecewise conditional according to the variable. We then consider Gaussian...

Penalization versus Goldenshluger − Lepski strategies in warped bases regression

Gaëlle Chagny (2013)

ESAIM: Probability and Statistics

This paper deals with the problem of estimating a regression function f, in a random design framework. We build and study two adaptive estimators based on model selection, applied with warped bases. We start with a collection of finite dimensional linear spaces, spanned by orthonormal bases. Instead of expanding directly the target function f on these bases, we rather consider the expansion of h = f ∘ G-1, where G is the cumulative distribution function of the design, following Kerkyacharian and...

Penalized estimators for non linear inverse problems

Jean-Michel Loubes, Carenne Ludeña (2010)

ESAIM: Probability and Statistics

In this article we tackle the problem of inverse non linear ill-posed problems from a statistical point of view. We discuss the problem of estimating an indirectly observed function, without prior knowledge of its regularity, based on noisy observations. For this we consider two approaches: one based on the Tikhonov regularization procedure, and another one based on model selection methods for both ordered and non ordered subsets. In each case we prove consistency of the estimators and show...

Penalized nonparametric drift estimation for a continuously observed one-dimensional diffusion process

Eva Löcherbach, Dasha Loukianova, Oleg Loukianov (2011)

ESAIM: Probability and Statistics

Let X be a one dimensional positive recurrent diffusion continuously observed on [0,t] . We consider a non parametric estimator of the drift function on a given interval. Our estimator, obtained using a penalized least square approach, belongs to a finite dimensional functional space, whose dimension is selected according to the data. The non-asymptotic risk-bound reaches the minimax optimal rate of convergence when t → ∞. The main point of our work is that we do not suppose the process to be in...

Penalized nonparametric drift estimation for a continuously observed one-dimensional diffusion process

Eva Löcherbach, Dasha Loukianova, Oleg Loukianov (2012)

ESAIM: Probability and Statistics

Let X be a one dimensional positive recurrent diffusion continuously observed on [0,t] . We consider a non parametric estimator of the drift function on a given interval. Our estimator, obtained using a penalized least square approach, belongs to a finite dimensional functional space, whose dimension is selected according to the data. The non-asymptotic risk-bound reaches the minimax optimal rate of convergence when t → ∞. The main point of our work is that we do not suppose the process to be in...

Penultimate approximation for the distribution of the excesses

Rym Worms (2002)

ESAIM: Probability and Statistics

Let F be a distribution function (d.f) in the domain of attraction of an extreme value distribution H γ ; it is well-known that F u ( x ) , where F u is the d.f of the excesses over u , converges, when u tends to s + ( F ) , the end-point of F , to G γ ( x σ ( u ) ) , where G γ is the d.f. of the Generalized Pareto Distribution. We provide conditions that ensure that there exists, for γ > - 1 , a function Λ which verifies lim u s + ( F ) Λ ( u ) = γ and is such that Δ ( u ) = sup x [ 0 , s + ( F ) - u [ | F ¯ u ( x ) - G ¯ Λ ( u ) ( x / σ ( u ) ) | converges to 0 faster than d ( u ) = sup x [ 0 , s + ( F ) - u [ | F ¯ u ( x ) - G ¯ γ ( x / σ ( u ) ) | .

Penultimate approximation for the distribution of the excesses

Rym Worms (2010)

ESAIM: Probability and Statistics

Let F be a distribution function (d.f) in the domain of attraction of an extreme value distribution H γ ; it is well-known that Fu(x), where Fu is the d.f of the excesses over u, converges, when u tends to s+(F), the end-point of F, to G γ ( x σ ( u ) ) , where G γ is the d.f. of the Generalized Pareto Distribution. We provide conditions that ensure that there exists, for γ > - 1 , a function Λ which verifies lim u s + ( F ) Λ ( u ) = γ and is such that Δ ( u ) = sup x [ 0 , s + ( F ) - u [ | F ¯ u ( x ) - G ¯ Λ ( u ) ( x / σ ( u ) ) | converges to 0 faster than d ( u ) = sup x [ 0 , s + ( F ) - u [ | F ¯ u ( x ) - G ¯ γ ( x / σ ( u ) ) | .

Permanents, order statistics, outliers, and robustness.

Narayanaswamy Balakrishnan (2007)

Revista Matemática Complutense

In this paper, we consider order statistics and outlier models, and focus primarily on multiple-outlier models and associated robustness issues. We first synthesise recent developments on order statistics arising from independent and non-identically distributed random variables based primarily on the theory of permanents. We then highlight various applications of these results in evaluating the robustness properties of several linear estimators when multiple outliers are possibly present in the...

Permutation tests for multiple changes

Marie Hušková, Aleš Slabý (2001)

Kybernetika

Approximations to the critical values for tests for multiple changes in location models are obtained through permutation tests principle. Theoretical results say that the approximations based on the limit distribution and the permutation distribution of the test statistics behave in the same way in the limit. However, the results of simulation study show that the permutation tests behave considerably better than the corresponding tests based on the asymptotic critical value.

Plug-in estimation of level sets in a non-compact setting with applications in multivariate risk theory

Elena Di Bernardino, Thomas Laloë, Véronique Maume-Deschamps, Clémentine Prieur (2013)

ESAIM: Probability and Statistics

This paper deals with the problem of estimating the level sets L(c) =  {F(x) ≥ c}, with c ∈ (0,1), of an unknown distribution function F on ℝ+2. A plug-in approach is followed. That is, given a consistent estimator Fn of F, we estimate L(c) by Ln(c) =  {Fn(x) ≥ c}. In our setting, non-compactness property is a priori required for the level sets to estimate. We state consistency results with respect to the Hausdorff distance and the volume of the symmetric difference. Our results are motivated by...

Plug-in estimators for higher-order transition densities in autoregression

Anton Schick, Wolfgang Wefelmeyer (2009)

ESAIM: Probability and Statistics

In this paper we obtain root-n consistency and functional central limit theorems in weighted L1-spaces for plug-in estimators of the two-step transition density in the classical stationary linear autoregressive model of order one, assuming essentially only that the innovation density has bounded variation. We also show that plugging in a properly weighted residual-based kernel estimator for the unknown innovation density improves on plugging in an unweighted residual-based kernel estimator....

Poisson convergence for the largest eigenvalues of heavy tailed random matrices

Antonio Auffinger, Gérard Ben Arous, Sandrine Péché (2009)

Annales de l'I.H.P. Probabilités et statistiques

We study the statistics of the largest eigenvalues of real symmetric and sample covariance matrices when the entries are heavy tailed. Extending the result obtained by Soshnikov in (Electron. Commun. Probab.9 (2004) 82–91), we prove that, in the absence of the fourth moment, the asymptotic behavior of the top eigenvalues is determined by the behavior of the largest entries of the matrix.

Poisson sampling for spectral estimation in periodically correlated processes

Vincent Monsan (1994)

Applicationes Mathematicae

We study estimation problems for periodically correlated, non gaussian processes. We estimate the correlation functions and the spectral densities from continuous-time samples. From a random time sample, we construct three types of estimators for the spectral densities and we prove their consistency.

Currently displaying 1 – 20 of 33

Page 1 Next