Page 1 Next

Displaying 1 – 20 of 96

Showing per page

Efficient bootstrap simulation: an overview.

Alex Sánchez (1990)

Qüestiió

Two basic sources of error are associated to the use of bootstrap methods: one is derived from the fact that the true distribution is substituted by a suitable estimate, and the other is simulation errors. Some techniques to reduce or quantify these errors are discussed in this work. Some of them such as importance sampling or antithetic variates are adapted from classical Monte Carlo swindles, whereas others such as the centered and the balanced bootstrap, are more specific. The existence of common...

Efficient estimation of functionals of the spectral density of stationary Gaussian fields

Carenne Ludeña (2010)

ESAIM: Probability and Statistics

Minimax bounds for the risk function of estimators of functionals of the spectral density of Gaussian fields are obtained. This result is a generalization of a previous result of Khas'minskii and Ibragimov on Gaussian processes. Efficient estimators are then constructed for these functionals. In the case of linear functionals these estimators are given for all dimensions. For non-linear integral functionals, these estimators are constructed for the two and three dimensional problems.

Efficient robust nonparametric estimation in a semimartingale regression model

Victor Konev, Serguei Pergamenshchikov (2012)

Annales de l'I.H.P. Probabilités et statistiques

The paper considers the problem of robust estimating a periodic function in a continuous time regression model with the dependent disturbances given by a general square integrable semimartingale with an unknown distribution. An example of such a noise is a non-Gaussian Ornstein–Uhlenbeck process with jumps (see (J. R. Stat. Soc. Ser. B Stat. Methodol.63 (2001) 167–241), (Ann. Appl. Probab.18 (2008) 879–908)). An adaptive model selection procedure, based on the weighted least square estimates, is...

Empirical approximation in Markov games under unbounded payoff: discounted and average criteria

Fernando Luque-Vásquez, J. Adolfo Minjárez-Sosa (2017)

Kybernetika

This work deals with a class of discrete-time zero-sum Markov games whose state process x t evolves according to the equation x t + 1 = F ( x t , a t , b t , ξ t ) , where a t and b t represent the actions of player 1 and 2, respectively, and ξ t is a sequence of independent and identically distributed random variables with unknown distribution θ . Assuming possibly unbounded payoff, and using the empirical distribution to estimate θ , we introduce approximation schemes for the value of the game as well as for optimal strategies considering both,...

Empirical comparison between the Nelson-Aalen Estimator and the Naive Local Constant Estimator.

Ana María Pérez-Marín (2008)

SORT

The Nelson-Aalen estimator is widely used in biostatistics as a non-parametric estimator of the cumulative hazard function based on a right censored sample. A number of alternative estimators can be mentioned, namely, the naive local constant estimator (Guillén, Nielsen and Pérez-Marín, 2007) which provides improved bias versus variance properties compared to the traditional Nelson-Aalen estimator. Nevertheless, an empirical comparison of these two estimators has never been carried out. In this...

Empirical estimator of the regularity index of a probability measure

Alain Berlinet, Rémi Servien (2012)

Kybernetika

The index of regularity of a measure was introduced by Beirlant, Berlinet and Biau [1] to solve practical problems in nearest neighbour density estimation such as removing bias or selecting the number of neighbours. These authors proved the weak consistency of an estimator based on the nearest neighbour density estimator. In this paper, we study an empirical version of the regularity index and give sufficient conditions for its weak and strong convergence without assuming absolute continuity or...

Empirical likelihood for quantile regression models with response data missing at random

S. Luo, Shuxia Pang (2017)

Open Mathematics

This paper studies quantile linear regression models with response data missing at random. A quantile empirical-likelihood-based method is proposed firstly to study a quantile linear regression model with response data missing at random. It follows that a class of quantile empirical log-likelihood ratios including quantile empirical likelihood ratio with complete-case data, weighted quantile empirical likelihood ratio and imputed quantile empirical likelihood ratio are defined for the regression...

Empirical regression quantile processes

Jana Jurečková, Jan Picek, Martin Schindler (2020)

Applications of Mathematics

We address the problem of estimating quantile-based statistical functionals, when the measured or controlled entities depend on exogenous variables which are not under our control. As a suitable tool we propose the empirical process of the average regression quantiles. It partially masks the effect of covariates and has other properties convenient for applications, e.g. for coherent risk measures of various types in the situations with covariates.

Estimación bayesiana de una función de fiabilidad con conocimiento a priori gamma expendido.

Domingo Morales, Leandro Pardo, Vicente Quesada (1987)

Trabajos de Investigación Operativa

Se plantea el problema de estimar una función de fiabilidad en el contexto bayesiano no paramétrico, pero utilizando técnicas paramétricas de estimación en procesos estocásticos. Se define el proceso gamma extendido, cuyas trayectorias son tasas de azar crecientes cuando se eligen convenientemente los parámetros del proceso. Se obtienen estimadores basados en este proceso, se estudian sus propiedades asintóticas bayesianas, y se termina con un ejemplo de aplicación mediante simulación.

Estimación de la densidad de probabilidad mediante desarrollos de Neumann.

César Rodríguez Ortiz (1985)

Trabajos de Estadística e Investigación Operativa

Se definen en este trabajo r-desarrollos de Neumann y se prueba que toda densidad de probabilidad f admite un desarrollo r-convergente a f.Los resultados obtenidos se aplican a la estimación de f sin la suposición de que sea de cuadrado integrable, estudiándose propiedades asintóticas de los estimadores e ilustrándose con un ejemplo de aplicación.

Currently displaying 1 – 20 of 96

Page 1 Next