Nearest neighbor classification in infinite dimension
Let X be a random element in a metric space (F,d), and let Y be a random variable with value 0 or 1. Y is called the class, or the label, of X. Let (Xi,Yi)1 ≤ i ≤ n be an observed i.i.d. sample having the same law as (X,Y). The problem of classification is to predict the label of a new random element X. The k-nearest neighbor classifier is the simple following rule: look at the k nearest neighbors of X in the trial sample and choose 0 or 1 for its label according to the majority vote. When , Stone...