Page 1 Next

Displaying 1 – 20 of 36

Showing per page

L 1 -penalization in functional linear regression with subgaussian design

Vladimir Koltchinskii, Stanislav Minsker (2014)

Journal de l’École polytechnique — Mathématiques

We study functional regression with random subgaussian design and real-valued response. The focus is on the problems in which the regression function can be well approximated by a functional linear model with the slope function being “sparse” in the sense that it can be represented as a sum of a small number of well separated “spikes”. This can be viewed as an extension of now classical sparse estimation problems to the case of infinite dictionaries. We study an estimator of the regression function...

L 2 -type contraction for systems of conservation laws

Denis Serre, Alexis F. Vasseur (2014)

Journal de l’École polytechnique — Mathématiques

The semi-group associated with the Cauchy problem for a scalar conservation law is known to be a contraction in L 1 . However it is not a contraction in L p for any p > 1 . Leger showed in [20] that for a convex flux, it is however a contraction in L 2 up to a suitable shift. We investigate in this paper whether such a contraction may happen for systems. The method is based on the relative entropy method. Our general analysis leads us to the new geometrical notion of Genuinely non-Temple systems. We treat in...

La medida de divergencia de Kagan en el muestreo secuencial con procesos de Dirichlet.

Domingo Morales González (1986)

Trabajos de Estadística

In this paper the Kagan divergence measure is extended in order to establish a measure of the information that a random sample gives about a Dirichlet process as a whole. After studying some of its properties, the expression obtained in sampling from the step n to the step n+1 is given, and its Bayesian properties are studied. We finish proving the good behaviour of a stopping rule defined on the basis of the information obtained in sampling when passing from a step to the following.

Large and Moderate Deviations Principles for Recursive Kernel Estimator of a Multivariate Density and its Partial Derivatives

Mokkadem, Abdelkader, Mariane, Pelletier, Baba, Thiam (2006)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 62G07, 60F10.In this paper we prove large and moderate deviations principles for the recursive kernel estimator of a probability density function and its partial derivatives. Unlike the density estimator, the derivatives estimators exhibit a quadratic behaviour not only for the moderate deviations scale but also for the large deviations one. We provide results both for the pointwise and the uniform deviations.

Least-squares trigonometric regression estimation

Waldemar Popiński (1999)

Applicationes Mathematicae

The problem of nonparametric function fitting using the complete orthogonal system of trigonometric functions e k , k=0,1,2,..., for the observation model y i = f ( x i n ) + η i , i=1,...,n, is considered, where η i are uncorrelated random variables with zero mean value and finite variance, and the observation points x i n [ 0 , 2 π ] , i=1,...,n, are equidistant. Conditions for convergence of the mean-square prediction error ( 1 / n ) i = 1 n E ( f ( x i n ) - f ^ N ( n ) ( x i n ) ) 2 , the integrated mean-square error E f - f ^ N ( n ) 2 and the pointwise mean-square error E ( f ( x ) - N ( n ) ( x ) ) 2 of the estimator f ^ N ( n ) ( x ) = k = 0 N ( n ) c ^ k e k ( x ) for f ∈ C[0,2π] and...

Limit state analysis on the un-repeated multiple selection bounded confidence model

Jiangbo Zhang, Yiyi Zhao (2023)

Kybernetika

In this paper, we study the opinion evolution over social networks with a bounded confidence rule. Node initial opinions are independently and identically distributed. At each time step, each node reviews the average opinions of several different randomly selected agents and updates its opinion only when the difference between its opinion and the average is below a threshold. First of all, we provide probability bounds of the opinion convergence and the opinion consensus, are both nontrivial events...

Limit theorems for rank statistics detecting gradual changes

Aleš Slabý (2001)

Commentationes Mathematicae Universitatis Carolinae

The purpose of the paper is to investigate weak asymptotic behaviour of rank statistics proposed for detection of gradual changes, linear trends in particular. The considered statistics can be used for various test procedures. The fundaments of the proofs are formed by results of Hušková [4] and Jarušková [5].

Currently displaying 1 – 20 of 36

Page 1 Next